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Preface

In recent years the subject of computer programrhagjbeen recognized as a discipline whose mastery
is fundamental and crucial to the success of margineering projects and which is amenable to
scientific treatement and presentation. It has acké from a craft to an academic discipline. Thigain
outstanding contributions toward this developmeerevmade by E.W. Dijkstra and C.A.R. Hoare.
Dijkstra's Notes on Structured Programming)] opened a new view of programming as a scientif
subject and intellectual challenge, and it coineel title for a "revolution” in programming. Hoare's
Axiomatic Basis of Computer Programmii@j showed in a lucid manner that programs areratle to

an exacting analysis based on mathematical reagoBith these papers argue convincingly that many
programmming errors can be prevented by makingrpnogers aware of the methods and techniques
which they hitherto applied intuitively and oftenaonsciously. These papers focused their attemtion
the aspects of composition and analysis of programmore explicitly, on the structure of algoritem
represented by program texts. Yet, it is abundacithar that a systematic and scientific approach to
program construction primarily has a bearing in ¢ase of large, complex programs which involve
complicated sets of data. Hence, a methodologyajramming is also bound to include all aspects of
data structuring. Programs, after all, are conda@taulations of abstract algorithms based on paldr
representations and structures of data. An outstgnbntribution to bring order into the bewildeagin
variety of terminology and concepts on data stmestuwas made by Hoare through Nigtes on Data
Structuring[3]. It made clear that decisions about strucyidiata cannot be made without knowledge of
the algorithms applied to the data and that, vieesa, the structure and choice of algorithms often
depend strongly on the structure of the underlyatp. In short, the subjects of program composition
and data structures are inseparably interwined.

Yet, this book starts with a chapter on data stinecfor two reasons. First, one has an intuitivadirig
that data precede algorithms: you must have soreetshbefore you can perform operations on them.
Second, and this is the more immediate reason btk assumes that the reader is familiar with the
basic notions of computer programming. Traditiopalhd sensibly, however, introductory programming
courses concentrate on algorithms operating ontivela simple structures of data. Hence, an
introductory chapter on data structures seems pppte.

Throughout the book, and particularly in Chap. &, fallow the theory and terminology expounded by
Hoare and realized in the programming languRgscal[4]. The essence of this theory is that data @ th
first instance represent abstractions of real pmema and are preferably formulated as abstract
structures not necessarily realized in common @rogring languages. In the process of program
construction the data representation is graduafiped -- in step with the refinement of the algjori --

to comply more and more with the constraints impdsg an available programming system [5]. We
therefore postulate a number of basic building gipiles of data structures, called the fundamental
structures. It is most important that they are troits that are known to be quite easily implemigieta
on actual computers, for only in this case can theyonsidered the true elements of an actual data
representation, as the molecules emerging frorfitaéstep of refinements of the data descriptibmey

are the record, the array (with fixed size), anel gbt. Not surprisingly, these basic building pptes
correspond to mathematical notions that are fundéhas well.

A cornerstone of this theory of data structurethé distinction between fundamental and "advanced"
structures. The former are the molecules -- therasdbuilt out of atoms -- that are the componefts o
the latter. Variables of a fundamental structurangfe only their value, but never their structurd an
never the set of values they can assume. As a qoesee, the size of the store they occupy remains
constant. "Advanced" structures, however, are ctariaed by their change of value and structuréndur
the execution of a program. More sophisticatedrtiegles are therefore needed for their implementatio
The sequence appears as a hybrid in this clad&ificdt certainly varies its length; but that clyanin
structure is of a trivial nature. Since the seqeeptays a truly fundamental role in practically all
computer systems, its treatment is included in Chap

The second chapter treats sorting algorithms.sipleys a variety of different methods, all servthg
same purpose. Mathematical analysis of some ofeth@lgorithms shows the advantages and
disadvantages of the methods, and it makes thegrwger aware of the importance of analysis in the



choice of good solutions for a given problem. Tratifoning into methods for sorting arrays and
methods for sorting files (often called internatlaxternal sorting) exhibits the crucial influerafedata
representation on the choice of applicable algmstrand on their complexity. The space allocated to
sorting would not be so large were it not for tlaetfthat sorting constitutes an ideal vehicle for
illustrating so many principles of programming asitliations occurring in most other applications. It
often seems that one could compose an entire progireg course by deleting examples from sorting
only.

Another topic that is usually omitted in introdugtoprogramming courses but one that plays an
important role in the conception of many algoritbredlutions is recursion. Therefore, the third ¢cbep

is devoted to recursive algorithms. Recursion @shto be a generalization of repetition (iteratjand

as such it is an important and powerful concegtriosgramming. In many programming tutorials, it is
unfortunately exemplified by cases in which simipdeation would suffice. Instead, Chap. 3 conceata
on several examples of problems in which recursitws for a most natural formulation of a solution
whereas use of iteration would lead to obscure amdbersome programs. The class of backtracking
algorithms emerges as an ideal application of séony but the most obvious candidates for the dise o
recursion are algorithms operating on data whaseetste is defined recursively. These cases asageile

in the last two chapters, for which the third cleatrovides a welcome background.

Chapter 4 deals with dynamic data structures, wéh data that change their structure during the
execution of the program. It is shown that the reige data structures are an important subclasiseof
dynamic structures commonly used. Although a réeaidefinition is both natural and possible in thes
cases, it is usually not used in practice. Insté¢he, mechanism used in its implementation is made
evident to the programmer by forcing him to uselieipreference or pointer variables. This book
follows this technique and reflects the presenestéthe art: Chapter 4 is devoted to programmaitg
pointers, to lists, trees and to examples invoh@agn more complicated meshes of data. It preséras

is often (and somewhat inappropriately) calledpisicessing. A fair amount of space is devotedee t
organizations, and in particular to search trebg. dhapter ends with a presentation of scatteedablso
called "hash" codes, which are oftern preferresetarch trees. This provides the possibility of carimy
two fundamentally different techniques for a fregileencountered application.

Programming is a constructive activity. How can amstructive, inventive activity be taught? One
method is to crystallize elementary compositionciptes out many cases and exhibit them in a
systematic manner. But programming is a field o$tweariety often involving complex intellectual
activities. The belief that it could ever be corgkxhinto a sort of pure recipe teaching is mistakémat
remains in our arsenal of teaching methods is #nefal selection and presentation of master example
Naturally, we should not believe that every persocapable of gaining equally much from the stufly o
examples. It is the characteristic of this approteit much is left to the student, to his diligerscel
intuition. This is particularly true of the relatily involved and long example programs. Their inia

in this book is not accidental. Longer programs thee prevalent case in practice, and they are much
more suitable for exhibiting that elusive but esis¢ringredient called style and orderly structufaey

are also meant to serve as exercises in the progfam reading, which too often is neglected Vrofaf
program writing. This is a primary motivation bethithe inclusion of larger programs as examples in
their entirety. The reader is led through a gradietelopment of the program; he is given various
snapshots in the evolution of a program, whereliy development becomes manifest as a stepwise
refinement of the details. | consider it esserttialt programs are shown in final form with suffitie
attention to details, for in programming, the déwdes in the details. Although the mere presematif

an algorithm's principle and its mathematical asialymay be stimulating and challenging to the
academic mind, it seems dishonest to the engirgeeriactitioner. | have therefore strictly adheredne

rule of presenting the final programs in a languagehich they can actually be run on a computer.

Of course, this raises the problem of finding arfawhich at the same time is both machine executable
and sufficiently machine independent to be inclugteduch a text. In this respect, neither widelgdis
languages nor abstract notations proved to be atkeqlihe language Pascal provides an appropriate
compromise; it had been developed with exactlyds in mind, and it is therefore used throughbig t
book. The programs can easily be understood byranogers who are familiar with some other high-
level language, such as ALGOL 60 or PL/1, becatige @asy to understand the Pascal notation while
proceeding through the text. However, this notap that some proparation would not be beneficiae T



book Systematic Programmini] provides an ideal background because it i® bBlgsed on the Pascal
notation. The present book was, however, not irddras a manual on the language Pascal; there exist
more appropriate texts for this purpose [7].

This book is a condensation -- and at the same dmelaboration -- of several courses on programmin
taught at the Federal Institute of Technology (EBHYUrich. | owe many ideas and views expressed in
this book to discussions with my collaborators BHEIn particular, | wish to thank Mr. H. Sandmdgr

his careful reading of the manuscript, and MissdH&heiler and my wife for their care and patiente
typing the text. | should also like to mention tsmulating influence provided by meetings of the
Working Groups 2.1 and 2.3 of IFIP, and particyidHe many memorable arguments | had on these
occasions with E. W. Dijkstra and C.A.R. Hoare. tLbst not least, ETH generously provided the
environment and the computing facilities withoutigththe preparation of this text would have been
impossible.

Zurich, Aug. 1975 N. Wirth
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Preface To The 1985 Edition

This new Edition incorporates many revisions ofaletand several changes of more significant nature
They were all motivated by experiences made inteheyears since the first Edition appeared. Most of
the contents and the style of the text, howeveve Hzeen retained. We briefly summarize the major
alterations.

The major change which pervades the entire texterois the programming language used to express the
algorithms. Pascal has been replaced by ModuldtBodgh this change is of no fundamental influence
to the presentation of the algorithms, the choscgustified by the simpler and more elegant syittact
structures of Modula-2, which often lead to a maréd representation of an algorithm's structurpa
from this, it appeared advisable to use a notdkiahis rapidly gaining acceptance by a wide comitgun
because it is well-suited for the development aféaprogramming systems. Nevertheless, the fatt tha
Pascal is Modula's ancestor is very evident andsetiee task of a transition. The syntax of Modala i
summarized in the Appendix for easy reference.

As a direct consequence of this change of progragifdanguage, Sect. 1.11 on the sequential file
structure has been rewritten. Modula-2 does netr @fbuilt-in file type. The revised Sect. 1.11ser@s
the concept of a sequence as a data structurmore@general manner, and it introduces a set @frpno
modules that incorporate the sequence concept oiulde? specifically.

The last part of Chapter 1 is new. It is dedicdtethe subject of searching and, starting out Viitbar

and binary search, leads to some recently invefaststring searching algorithms. In this section i
particular we use assertions and loop invariantsdémonstrate the correctness of the presented
algorithms.

A new section on priority search trees rounds b# thapter on dynamic data structures. Also this
species of trees was unknown when the first Ed#ippeared. They allow an economical representation
and a fast search of point sets in a plane.
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The entire fifth chapter of the first Edition haselm omitted. It was felt that the subject of coewpil
construction was somewhat isolated from the pregednapters and would rather merit a more extensive
treatment in its own volume.

Finally, the appearance of the new Edition reflegtslevelopment that has profoundly influenced
publications in the last ten years: the use of agens and sophisticated algorithms to prepare and
automatically typeset documents. This book wasddind laid out by the author with the aid of athil
computer and its document editor Lara. Without ¢htsls, not only would the book become more
costly, but it would certainly not be finished yet.

Palo Alto, March 1985 N. Wirth

Notation
The following notations, adopted from publicatiaid€.W. Dijkstra, are used in this book.

In logical expressions, the character & denotegucmtion and is pronounced as and. The character ~
denotes negation and is pronounced as not. Boldfaeed E are used to denote the universal and
existential quantifiers. In the following formulathe left part is the notation used and definect lier
terms of the right part. Note that the left panwsid the use of the symbol "...", which appealghe
readers intuition.

Aiim<i<n:R = Pn& P& ... & P

The R are predicates, and the formula asserts thatlifordices i ranging from a given value m to, but
excluding a value n,;Polds.

Eim<i<n:R = Py or Pyior...or R,

The R are predicates, and the formula asserts thabfoesndices i ranging from a given value m to, but
excluding a value n,;Polds.

Sim<i<n:x = Xm + X1 + oo + Kt

MINi:m<i<n:x minimum(%,, ... , %.1)

MAX iim<i<n:x maximum(, ... , %-1)
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1. Fundamental Data Structures
1.1. Introduction

The modern digital computer was invented and irgdnas a device that should facilitate and speed up
complicated and time-consuming computations. Inntfagority of applications its capability to storeda
access large amounts of information plays the damtin part and is considered to be its primary
characteristic, and its ability to compute, i.e.calculate, to perform arithmetic, has in manyesdsecome
almost irrelevant.

In all these cases, the large amount of informatiat is to be processed in some sense represents a
abstraction of a part of reality. The informatitvat is available to the computer consists of acsedeset of
data about the actual problem, namely that setishednsidered relevant to the problem at hand, db&
from which it is believed that the desired resaolis be derived. The data represent an abstradtiaalidy

in the sense that certain properties and charatitsriof the real objects are ignored because #hey
peripheral and irrelevant to the particular prohlém abstraction is thereby also a simplificatidriamts.

We may regard a personnel file of an employer asxample. Every employee is represented (abstiacted
on this file by a set of data relevant either te ¢mployer or to his accounting procedures. THisrsey
include some identification of the employee, foample, his or her name and salary. But it will most
probably not include irrelevant data such as thiedwdor, weight, and height.

In solving a problem with or without a computersitnecessary to choose an abstraction of reality,to
define a set of data that is to represent thesitation. This choice must be guided by the probie be
solved. Then follows a choice of representatiothi information. This choice is guided by the ttwt is
to solve the problem, i.e., by the facilities offérby the computer. In most cases these two stepsoh
entirely separable.

The choice of representation of data is often iyfdifficult one, and it is not uniquely determohéy the
facilities available. It must always be taken ie tight of the operations that are to be perforrmedhe
data. A good example is the representation of nusnléhich are themselves abstractions of propeoties
objects to be characterized. If addition is theydnot at least the dominant) operation to be peréat, then

a good way to represent the number n is to writdrokes. The addition rule on this representation i
indeed very obvious and simple. The Roman numearaldased on the same principle of simplicity, and
the adding rules are similarly straightforward femall numbers. On the other hand, the representhai
Arabic numerals requires rules that are far fromials (for small numbers) and they must be memdrize
However, the situation is reversed when we congdber addition of large numbers or multiplicatiamd
division. The decomposition of these operation® istmpler ones is much easier in the case of
representation by Arabic numerals because of thgstematic structuring principle that is based on
positional weight of the digits.

It is generally known that computers use an interapresentation based on binary digits (bits).sThi
representation is unsuitable for human beings ksecafithe usually large number of digits involvid it

is most suitable for electronic circuits becausetttio values 0 and 1 can be represented conveyemd
reliably by the presence or absence of electriceats, electric charge, or magnetic fields.

From this example we can also see that the quesfioapresentation often transcends several lexfels
detail. Given the problem of representing, say,bsition of an object, the first decision may léadhe
choice of a pair of real numbers in, say, eitheit&s@an or polar coordinates. The second decisiawlead

to a floating-point representation, where everyl reamber x consists of a pair of integers denoting
fraction f and an exponent e to a certain baseh(shat x = x2). The third decision, based on the
knowledge that the data are to be stored in a camponay lead to a binary, positional represematit
integers, and the final decision could be to regrebinary digits by the electric charge in a semdtictor
storage device. Evidently, the first decision iis tthain is mainly influenced by the problem sitoiat and
the later ones are progressively dependent onotileahd its technology. Thus, it can hardly be nexgh
that a programmer decide on the number represemttdi be employed, or even on the storage device
characteristics. These lower-level decisions cafefte¢o the designers of computer equipment, waeeh
the most information available on current technglegth which to make a sensible choice that will be
acceptable for all (or almost all) applications veheumbers play a role.



In this context, the significance of programmingdaages becomes apparent. A programming language
represents an abstract computer capable of intergriie terms used in this language, which mayaayb

a certain level of abstraction from the objectsduse the actual machine. Thus, the programmer vees u
such a higher-level language will be freed (anddzrfrom questions of number representation, &f th
number is an elementary object in the realm ofldriguage.

The importance of using a language that offers rave@oient set of basic abstractions common to most
problems of data processing lies mainly in the aregeliability of the resulting programs. It isséer to
design a program based on reasoning with familidions of numbers, sets, sequences, and repetitions
than on bits, storage units, and jumps. Of colasegctual computer represents all data, whethebatsn
sets, or sequences, as a large mass of bits. Bus firelevant to the programmer as long as h&herdoes

not have to worry about the details of represematif the chosen abstractions, and as long as sleeotan

rest assured that the corresponding representetiiosen by the computer (or compiler) is reasonfadsle

the stated purposes.

The closer the abstractions are to a given compiltereasier it is to make a representation chioicéhe
engineer or implementor of the language, and tiglemi is the probability that a single choice wid b
suitable for all (or almost all) conceivable apations. This fact sets definite limits on the degod
abstraction from a given real computer. For exapiplgould not make sense to include geometric abje
as basic data items in a general-purpose langsay= their proper repesentation will, becausetof i
inherent complexity, be largely dependent on therations to be applied to these objects. The natude
frequency of these operations will, however, nokhewn to the designer of a general-purpose larguag
and its compiler, and any choice the designer maiggsbe inappropriate for some potential applicetio

In this book these deliberations determine theaghof notation for the description of algorithmsl dheir
data. Clearly, we wish to use familiar notions afthematics, such as numbers, sets, sequencesy ang s
rather than computer-dependent entities such stsibgs. But equally clearly we wish to use a riotafor
which efficient compilers are known to exist. Itdgually unwise to use a closely machine-orientedl a
machine-dependent language, as it is unhelpfueseribe computer programs in an abstract notattian t
leaves problems of representation widely open.grbgramming language Pascal had been designed in an
attempt to find a compromise between these extreamesthe successor languages Modula-2 and Oberon
are the result of decades of experience [1-3]. @begtains Pascal's basic concepts and incorpmates
improvements and some extensions; it is used thautgthis book [1-5]. It has been successfully
implemented on several computers, and it has beewrsthat the notation is sufficiently close tolrea
machines that the chosen features and their regetissms can be clearly explained. The languagdsis
sufficiently close to other languages, and heneddhsons taught here may equally well be apptieddir

use.

1.2. The Concept of Data Type

In mathematics it is customary to classify variabdecording to certain important characteristideaC
distinctions are made between real, complex, agicdd variables or between variables representing
individual values, or sets of values, or sets td,98r between functions, functionals, sets of fioms, and

so on. This notion of classification is equallyndt more important in data processing. We will adhe

the principle that every constant, variable, exgioes or function is of a certatype This type essentially
characterizes the set of values to which a con$taluings, or which can be assumed by a variable or
expression, or which can be generated by a fumctio

In mathematical texts the type of a variable isallgideducible from the typeface without considieranf
context; this is not feasible in computer progratdsually there is one typeface available on compute
equipment (i.e., Latin letters). The rule is therefwidely accepted that the associated type isreaglicit

in a declaration of the constant, variable, or fiom; and that thigdeclaration textually precedes the
application of that constant, variable, or functidhis rule is particularly sensible if one consgithe fact
that a compiler has to make a choice of repredentatf the object within the store of a computer.
Evidently, the amount of storage allocated to aaw@e will have to be chosen according to the sizthe
range of values that the variable may assumeidfitiformation is known to a compiler, so-callechdgnic
storage allocation can be avoided. This is vergrothe key to an efficient realization of an altfori.

12



The primary characteristics of the concept of tijpet is used throughout this text, and that is edidzbin
the programming language Oberon, are the folloying]:

1. A data type determines the set of values to lwhiconstant belongs, or which may be assumed by a
variable or an expression, or which may be geneéfayean operator or a function.

2.The type of a value denoted by a constant, lvleriar expression may be derived from its forniter
declaration without the necessity of executingdbmputational process.

3.Each operator or function expects arguments e type and yields a result of a fixed typeaif
operator admits arguments of several types (e.ds ttsed for addition of both integers and real
numbers), then the type of the result can be détedrfrom specific language rules.

As a consequence, a compiler may use this infoomatn types to check the legality of various cargs.

For example, the mistaken assignment of a Booléagic@l) value to an arithmetic variable may be
detected without executing the program. This kifcedundancy in the program text is extremely ulsa$u

an aid in the development of programs, and it rbestonsidered as the primary advantage of good high
level languages over machine code (or symbolicralssecode). Evidently, the data will ultimately be
represented by a large number of binary digitespective of whether or not the program had ihjtia¢en
conceived in a high-level language using the conoépype or in a typeless assembly code. To the
computer, the store is a homogeneous mass of kitew apparent structure. But it is exactly tHistaact
structure which alone is enabling human programneerscognize meaning in the monotonous landscape
of a computer store.

The theory presented in this book and the progragnténguage Oberon specify certain methods of
defining data types. In most cases new data typesiefined in terms of previously defined data sype
Values of such a type are usually conglomerateswiponent values of the previously defined conetitu
types, and they are said to $teuctured If there is only one constituent type, that isali components are
of the same constituent type, then it is knowrhasiiase type. The number of distinct values betantyi a
type T is called itxardinality. The cardinality provides a measure for the amairgtorage needed to
represent a variable x of the type T, denoted by. x

Since constituent types may again be structuretireehierarchies of structures may be built up,, but
obviously, the ultimate components of a structue atomic. Therefore, it is necessary that a rmtas
provided to introduce such primitive, unstructutgges as well. A straightforward method is that of
enumeratingthe values that are to constitute the type. Famgie in a program concerned with plane
geometric figures, we may introduce a primitiveetygalled shape, whose values may be denoted by the
identifiersrectangle, square, ellipse, circlBut apart from such programmer-defined typeggthell have

to be some standard, predefined types. They usuadlyde numbers and logical values. If an ordering
exists among the individual values, then the tgpgaid to be ordered or scalar. In Oberon, alruottred
types are ordered; in the case of explicit enurierathe values are assumed to be ordered by their
enumeration sequence.

With this tool in hand, it is possible to defineémitive types and to build conglomerates, struaungpes

up to an arbitrary degree of nesting. In practités not sufficient to have only one general melthod
combining constituent types into a structure. Witke regard to practical problems of representeadimh
use, a general-purpose programming language miestsefveral methods of structuring. In a matherahtic
sense, they are equivalent; they differ in the afpes available to select components of thesetates:
The basic structuring methods presented here ararthy, therecord, the set and thesequenceMore
complicated structures are not usually definedtaticsypes, but are instead dynamically generdtethg

the execution of the program, when they may vargize and shape. Such structures are the subject of
Chap. 4 and include lists, rings, trees, and gérferdie graphs.

Variables and data types are introduced in a progneorder to be used for computation. To this endet

of operators must be available. For each standataltgpe a programming languages offers a cerédinfs
primitive, standard operators, and likewise witleteatructuring method a distinct operation and tiaia
for selecting a component. The task of compositibaperations is often considered the heart ofathef
programming. However, it will become evident thhe tappropriate composition of data is equally
fundamental and essential.
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The most important basic operators are compariedraasignment, i.e., the test for equality (andbfoler
in the case of ordered types), and the commandftree equality. The fundamental difference between
these two operations is emphasized by the cletinclion in their denotation throughout this text.

Test for equality: X=y (an expression with vallRUE or FALSE)
Assignment to x: X:=y (a statement making x edoial)

These fundamental operators are defined for mdst types, but it should be noted that their exeouti
may involve a substantial amount of computatiofifart if the data are large and highly structured.

For the standard primitive data types, we postuiateonly the availability of assignment and conigar,
but also a set of operators to create (compute) vadwes. Thus we introduce the standard operatbns
arithmetic for numeric types and the elementaryatpes of propositional logic for logical values.

1.3. Primitive Data Types

A new, primitive type is definable by enumeratihg distinct values belonging to it. Such a typeaked
anenumeration typdts definition has the form

TYPE T=(c1,c2,..,cn)
T is the new type identifier, and theace the new constant identifiers.
Examples

TYPE shape = (rectangle, square, ellipse, circle)

TYPE color = (red, yellow, green)

TYPE sex = (male, female)

TYPE weekday = (Monday, Tuesday, Wednesday, Thyrsdaay,
Saturday, Sunday)

TYPE currency = (franc, mark, pound, dollar, shjj lira, guilder,
krone, ruble, cruzeiro, yen)

TYPE destination = (hell, purgatory, heaven)

TYPE vehicle = (train, bus, automobile, boat, airya)

TYPE rank = (private, corporal, sergeant, lieuténeaptain, major,
colonel, general)

TYPE object = (constant, type, variable, procedmegdule)

TYPE structure = (array, record, set, sequence)

TYPE condition = (manual, unloaded, parity, skew)

The definition of such types introduces not onipew type identifier, but at the same time the det o
identifiers denoting the values of the new typeedéhidentifiers may then be used as constantsghoot
the program, and they enhance its understandabditgiderably. If, as an example, we introducealdeis
s,d, r,and b.

VAR s: sex
VAR d: weekday
VAR r: rank

then the following assignment statements are plessib

s = male

d := Sunday
r := major

b :=TRUE

Evidently, they are considerably more informativart their counterparts
s=1d=7 r:=6 b:=2

which are based on the assumption that c, d, r,baace defined as integers and that the constaats a
mapped onto the natural numbers in the order of tmeumeration. Furthermore, a compiler can check
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against the inconsistent use of operators. For plargiven the declaration of s above, the stateémen
s+1 would be meaningless.

If, however, we recall that enumerations are omdleteen it is sensible to introduce operators ¢festerate
the successor and predecessor of their argumenth®vefore postulate the following standard opesato
which assign to their argument its successor aadgmessor respectively:

INC(x) DEC(X)

1.4. Standard Primitive Types

Standard primitive types are those types that aafladle on most computers as built-in featureseyTh
include the whole numbers, the logical truth valuesl a set of printable characters. On many coenput
fractional numbers are also incorporated, togethttr the standard arithmetic operations. We detiase
types by the identifiers

INTEGER, REAL, BOOLEAN, CHAR, SET

1.4.1. Integer types

The type INTEGER comprises a subset of the wholmbers whose size may vary among individual
computer systems. If a computer usdsits to represent an integer in two's complemetetion, then the
admissible values x must satisfy "' x < 2", It is assumed that all operations on data oftype are
exact and correspond to the ordinary laws of articnand that the computation will be interrupitedhe
case of a result lying outside the representalilsetuThis event is calleerflow The standard operators
are the four basic arithmetic operations of addif{i®), subtraction (-), multiplication (*), andvikion (/,
DIV).

Whereas the slash denotes ordinary division regulti a value of type REAL, the operator DIV desote
integer division resulting in a value of type INTER. If we define the quotient g = m DIV n and the
remainder r = m MOD n, the following relations hoésuming n > 0:

g*n+r=m and &r<n

Examples:
31DIV10O = 3 31MOD10=1
-31DIV10 = -4 -31MOD 10= 9

We know that dividing by 10can be achieved by merely shifting the decimaitslig places to the right
and thereby ignoring the lost digits. The same otktipplies, if numbers are represented in binastead
of decimal form. If two's complement representaimuised (as in practically all modern computergn
the shifts implement a division as defined by theve DIV operaton. Moderately sophisticated conmpile
will therefore represent an operation of the formDiy 2" or m MOD 2' by a fast shift (or mask)
operation.

1.4.2. Thetype REAL

The type REAL denotes a subset of the real numbereas arithmetic with operands of the types
INTEGER is assumed to yield exact results, ariticnet values of type REAL is permitted to be
inaccurate within the limits of round-off errorsusad by computation on a finite number of digitsisTis

the principal reason for the explicit distinctioptlveen the types INTEGER and REAL, as it is made in
most programming languages.

The standard operators are the four basic arittmefierations of addition (+), subtraction (-),
multiplication (*), and division (/). It is an ess& of data typing that different types are incotiyba
under assignment. An exception to this rule is mfadeassignment of integer values to real varigbles
because here the semanitcs are unambiguous. Alftertegers form a subset of real numbers. However
the inverse direction is not permissible: Assignimeha real value to an integer variable requires a
operation such as truncation or rounding. The stahttansfer functioiEntier(x) yields the integral part of
X. Rounding of x is obtained by Entier(x + 0.5).
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Many programming languages do not include an expi@ten operator. The following is an algorithnr fo
the fast computation of y ="xwhere n is a non-negative integer.

y:=10;i:=n; ‘

WHILEi>0DO (*x" = X*y*)
IF ODD(i) THEN y := y*x END ;
X =x*X;i:=iDIV2

END

1.4.3. Thetype BOOL EAN

The two values of the standard type BOOLEAN areotih by the identifiers TRUE and FALSE. The
Boolean operators are the logical conjunctionudisiion, and negation whose values are definecabier
1.1. The logical conjunction is denoted by the sgi, the logical disjunction by OR, and negation b
“~”. Note that comparisons are operations yieldangesult of type BOOLEAN. Thus, the result of a
comparison may be assigned to a variable, or it b®aysed as an operand of a logical operator in a
Boolean expression. For instance, given Booleaiabis p and g and integer variables x =5,y z 8,

10, the two assignments

p=x=y
q:=(x<y)&(y<2
yield p = FALSE and q = TRUE.

p q p&q pORq ~p
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE TRUE FALSE FALSE
FALSE TRUE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE TRUE
Table 1.1 Boolean Operators.

The Boolean operators & (AND) and OR have an anditi property in most programming languages,
which distinguishes them from other dyadic opesat@/hereas, for example, the su#y is not defined, if
either x or y is undefined, the conjunction p&glefined even if q is undefined, provided that pAd_SE.
This conditionality is an important and useful pedy. The exact definition of & and OR is therefgreen

by the following equations:

p&q = if p then q else FALSE
pOR(q = if p then TRUE else q

1.4.4. Thetype CHAR

The standard type CHAR comprises a set of printabkracters. Unfortunately, there is no generally
accepted standard character set used on all comgystems. Therefore, the use of the predicatadsta”
may in this case be almost misleading; it is taubderstood in the sense of "standard on the compute
system on which a certain program is to be executed

The character set defined by the International d&tais Organization (ISO), and particularly its Aroan
version ASCII (American Standard Code for Inforroatinterchange) is the most widely accepted set. Th
ASCII set is therefore tabulated in Appendix Actinsists of 95 printable (graphic) characters aBd 3
control characters, the latter mainly being usedda@ta transmission and for the control of printing
equipment.

In order to be able to design algorithms involvioiwaracters (i.e., values of type CHAR) that ardesys
independent, we should like to be able to assumtaiceninimal properties of character sets, namely:

1. The type CHAR contains the 26 capital Latindetf the 26 lower-case letters, the 10 decimatg]igi
and a number of other graphic characters, suchirdymtion marks.

2. The subsets of letters and digits are orderdccantiguous, i.e.,



("A" <x) & (x<"Z") implies that x is a capital letter
("fa"<x) & (x<"z")  implies that x is a lower-case letter
("0"<x) & (x<"9")  implies that x is a decimal digit

3. The type CHAR contains a non-printing, blankrelster and a line-end character that may be used as

separators.

THIS, |IS_A_TEXT

Fig. 1.1. Representations of a text

The availability of two standard type transfer fiioics between the types CHAR and INTEGER is
particularly important in the quest to write pragsain a machine independent form. We will call them
ORD(ch), denoting the ordinal numberabfin the character set, and CHR(i), denoting theaittar with
ordinal numbei. Thus, CHR is the inverse function of ORD, ancewersa, that is,

ORD(CHR(i)) = i (if CHR(i) is defined)

CHR(ORD(c)) = ¢
Furthermore, we postulate a standard function CAPR(tts value is defined as the capital letter
corresponding teh, provided ch is a letter.

ch is a lower-case letter implies that CAP(ch) sresponding capital letter

chis a capital letter implies that CAP(ch) =ch

145. ThetypeSET

The type SET denotes sets whose elements arersiieagbe range 0 to a small number, typically 863.
Given, for example, variables

VART, s, t: SET
possible assignments are
r={5}s:={xy..z5t:={}
Here, the value assigned to r is the singletorcaesisting of the single element 5; to t is assigthes
empty set, and to s the elements x, y, y+1, ...,,z-1
The following elementary operators are defined arables of type SET:

* set intersection

+ set union

- set difference

/ symmetric set difference
IN  set membership

Constructing the intersection or the union of tvatssis often called set multiplication or set aiddit
respectively; the priorities of the set operators defined accordingly, with the intersection opara
having priority over the union and difference opers, which in turn have priority over the memb@sh
operator, which is classified as a relational oferd-ollowing are examples of set expressionstaed
fully parenthesized equivalents:

r*s+t = (rs)+t
r-s*t =r-(s*)
r-s+t = (r-s)+t
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r+si/t
XINs+t

r+ (s/t)
X IN (s+t)

15. TheArray Structure

The array is probably the most widely used datacsire; in some languages it is even the only one
available. An array consists of components whioh alf of the same type, called isse typgit is
therefore called Aomogeneoustructure. The array israndom-accesstructure, because all components
can be selected at random and are equally quiddgssible. In order to denote an individual comptne
the name of the entire structure is augmented dinttexselecting the component. This index is to be an
integer between 0 and n-1, where n is the numbeleofients, theize of the array.

TYPE T = ARRAY n OF TO
Examples

TYPE Row =ARRAY 4 OF REAL
TYPE Card = ARRAY 80 OF CHAR
TYPE Name = ARRAY 32 OF CHAR

A particular value of a variable
VAR x: Row

with all components satisfying the equatigr2', may be visualized as shown in Fig. 1.2.

Xo 10
X1 0.5

X2 0.25
X3 0.125

Fig. 1.2 Array of type Row with ;x 2

An individual component of an array can be selebtgdnindex Given an array variable x, we denote an
array selector by the array name followed by tlspeetive component's index i, and we write ox X([i].
Because of the first, conventional notation, a congmt of an array component is therefore also aalle
subscriptedrariable.

The common way of operating with arrays, partidylavith large arrays, is to selectively update &ng
components rather than to construct entirely neuctired values. This is expressed by considenng a
array variable as an array of component varialbieskey permitting assignments to selected components
such as for example x[i] := 0.125. Although selestupdating causes only a single component value to
change, from a conceptual point of view we musardghe entire composite value as having changed to

The fact that array indices, i.e., names of arrayjnmonents, are integers, has a most important
consequence: indices may be computed. A genetakiexpression may be substituted in place of an
index constant; this expression is to be evaluaed, the result identifies the selected componEnis
generality not only provides a most significant grmverful programming facility, but at the samediih
also gives rise to one of the most frequently entened programming mistakes: The resulting valug ma
be outside the interval specified as the rangedites of the array. We will assume that decentpeding
systems provide a warning in the case of such takae access to a non-existent array component.

The cardinality of a structured type, i. e. the bemof values belonging to this type, is the pradidhe
cardinality of its components. Since all componerftan array type T are of the same base type €O, w
obtain

card(T) = card(Td)
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Constituents of array types may themselves betsteet An array variable whose components are again
arrays is called matrix. For example,

M: ARRAY 10 OF Row

is an array consisting of ten components (rowsh €anstisting of four components of type REAL, éd
called a 10 x 4 matrix with real components. Selecinay be concatenated accordingly, such thaturid
M[i]lj] denote the jth component of row Mwhich is the i th component of M. This is usualhbreviated
as M, j] and in the same spirit the declaration

M: ARRAY 10 OF ARRAY 4 OF REAL
can be written more concisely as
M: ARRAY 10, 4 OF REAL.

If a certain operation has to be performed on @thgonents of an array or on adjacent componengs of
section of the array, then this fact may convetydme emphasized by using the FOR satement, asrshow
in the following examples for computing the sum éodfinding the maximal element of an array desthr
as

VAR a: ARRAY N OF INTEGER

sum = 0;
FORi:=0 TO N-1 DO sum := a[i] + sum END

k := 0; max := a[0];
FORi:=1TO N-1 DO

IF max < a[i] THEN k :=i; max := a[k] END
END.

In a further example, assume that a fraction é@esented in its decimal form with k-1 digits,,iley an
array d such that

f=Si:0<i<k d*10' or
f = dy+ 10%d, + 100*ch + ... + d.1*10%?

Now assume that we wish to divide f by 2. Thisasiel by repeating the familiar division operation &t
k-1 digits d, starting with i=1. It consists of dividing eaclgitl by 2 taking into account a possible carry
from the previous position, and of retaining a jfdesemainder r for the next position:

r:=10*r +d[i]; d[i]:=rDIV 2; r:=r MOD 2

This algorithm is used to compute a table of negatiowers of 2. The repetition of halving to congpait,
22 .., 2V is again appropriately expressed by a FOR statertfars leading to a nesting of two FOR
statements.

PROCEDURE Power(VAR W: Texts.Writer; N: INTEGER);
(*compute decimal representation of negative grsvef 2*)
VAR, k, r: INTEGER;

d: ARRAY N OF INTEGER;
BEGIN
FORk:=0TO N-1DO
Texts.Write(W, "."); r :=0;
FORi:=0TO k-1 DO
r:=10*r + d[i]; d[i] := r DIV 2;r :=MOD 2;
Texts.Write(W, CHR(d[i] + ORD("0")))
END ;
d[K] := 5; Texts.Write(W, "5"); Texts.Writel(W)
END
END Power.

The resulting output text for N = 10 is
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5

.25

125

.0625
.03125
.015625
.0078125
.00390625
.001953125
.0009765625

1.6. TheRecord Structure

The most general method to obtain structured tigpé&s join elements of arbitrary types, that aregioly
themselves structured types, into a compound. Ebammfstom mathematics are complex numbers,
composed of two real numbers, and coordinates iofpa@omposed of two or more numbers according to
the dimensionality of the space spanned by thedioate system. An example from data processing is
describing people by a few relevant characterisaosh as their first and last names, their dathirti,
sex, and marital status.

In mathematics such a compound type is the Cantgsiaduct of its constituent types. This stems ftbm
fact that the set of values defined by this complotype consists of all possible combinations ofiea|
taken one from each set defined by each constitiypet Thus, the number of such combinations, also
calledn-tuples is the product of the number of elements in eamfstituent set, that is, the cardinality of
the compound type is the product of the cardirealitif the constituent types.

In data processing, composite types, such as gésas of persons or objects, usually occur irsfide data
banks and record the relevant characteristicsperaon or object. The word record has thereforerec
widely accepted to describe a compound of datahisf hature, and we adopt this nomenclature in
preference to the term Cartesian product. In génenmcord type T with components of the typesT2,,

..., Tnis defined as follows:

TYPET= RECORD s1:T1;s2:T2; ... sn: Tn END
card(T) = card(T1) * card(T2) * ... * card(Tn)

Examples
TYPE Complex = RECORD re, im: REAL END
TYPE Date = RECORD day, month, year: INTEGER END

TYPE Person = RECORD name, firstname: Name;
birthdate: Date;
sex: (male, female);
marstatus: (single, married, widowed, divorced)

END
We may visualize particular, record-structured ealof, for example, the variables
z: Complex
d: Date
p: Person

as shown in Fig. 1.3.
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Complex z Date d Person p
10 1 SMITH
-1.0 4 JOHN
1973 18 1 1986
male
single

Fig. 1.3. Records of type Complex, Date, and Person

The identifiers s1, s2, ..., sn introduced by@re type definition are the names given to theaviddal
components of variables of that type. As componeiiteecords are callefields the names aréeld
identifiers They are used in record selectors applied tordeswuctured variables. Given a variable x: T,
its i-th field is denoted by x.si. Selective updgtof x is achieved by using the same selectootdgion on
the left side in an assignment statement:

X.Si=e

where e is a value (expression) of type Ti. Giflen,example, the record variables z, d, and p dedla
above, the following are selectors of components:

z.im (of type REAL)
d.month (of type INTEGER)
p.name (of type Name)
p.birthdate (of type Date)

p.birthdate.day (of type INTEGER)

The example of the typRersonshows that a constituent of a record type mayf itee structured. Thus,
selectors may be concatenated. Naturally, diffesgnicturing types may also be used in a nestduofas
For example, the i-th component of an areaeing a component of a record variables denoted by
r.a[i], and the component with the selector naré the i-th record structured component of the yaerés
denoted by a[i].s.

It is a characteristic of the Cartesian product theontains all combinations of elements of tbastituent
types. But it must be noted that in practical aggtions not all of them may be meaningful. Foranseg,
the typeDate as defined above includes the 31st April as welha 29th February 1985, which are both
dates that never occurred. Thus, the definitionthad type does not mirror the actual situation refi
correctly; but it is close enough for practical pases, and it is the responsibility of the programmho
ensure that meaningless values never occur durehgxecution of a program.

The following short excerpt from a program showes tise of record variables. Its purpose is to cthmt
number of persons represented by the array varfiaivlgy that are both female and single:

VAR count: INTEGER,;
family: ARRAY N OF Person;

count :=0;
FORi:=0TO N-1 DO

IF (family[i].sex = female) & (family[i].marstatus single) THEN INC(count) END
END

The record structure and the array structure hheecobmmon property that both a@ndom-access
structures. The record is more general in the stératethere is no requirement that all constitugpes
must be identical. In turn, the array offers grediexibility by allowing its component selectors be
computable values (expressions), whereas the sedext record components are field identifiers diszd
in the record type definition.
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1.7. Representation Of Arrays, Records, And Sets

The essence of the use of abstractions in prognagnimithat a program may be conceived, understood,
and verified on the basis of the laws governingabstractions, and that it is not necessary to hatieer
insight and knowledge about the ways in which thetractions are implemented and represented in a
particular computer. Nevertheless, it is esseftiah professional programmer to have an understgraf
widely used techniques for representing the basitcepts of programming abstractions, such as the
fundamental data structures. It is helpful insadarit might enable the programmer to make sensible
decisions about program and data design in the tighonly of the abstract properties of struciuteut
also of their realizations on actual computersingknto account a computer's particular capabditand
limitations.

The problem of data representation is that of mapghe abstract structure onto a computer store.
Computer stores are - in a first approximationrays of individual storage cells callégtes They are
understood to be groups of 8 bits. The indicebeflytes are calleatldresses

VAR store: ARRAY StoreSize OF BYTE

The basic types are represented by a small nunilisites, typically 2, 4, or 8. Computers are desijto
transfer internally such small numbers (possiblgflontiguous bytes concurrently, "in parallelh& unit
transferable concurrently is calledvard.

1.7.1. Representation of Arrays

A representation of an array structure is a mappinge (abstract) array with components of typento

the store which is an array with components of Y& E. The array should be mapped in such a waty tha
the computation of addresses of array componeiats $mple (and therefore as efficient) as possiiiie
address i of the j-th array component is computethbe linear mapping function

i=ip+j*s
where j is the address of the first component, and sésntimber of words that a component occupies.
Assuming that the word is the smallest individuaitgnsferable unit of store, it is evidently highly
desirable that s be a whole number, the simplest baing s = 1. If s is not a whole number (ansliththe
normal case), then s is usually rounded up to ¢éx¢ larger integer S. Each array component theopies
S words, whereby S-s words are left unused (see Ei§ and 1.6). Rounding up of the number of words

needed to the next whole number is caediding The storage utilization factor u is the quotiehthe
minimal amounts of storage needed to represemtictsite and of the amount actually used:

u = s/ (srounded up to nearest integer)

store

&l
T R T T T T T T T o owl

OIS
7 7

—_— L S

Fig. 1.5. Mapping an array onto a store

=

[ unused
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Fig. 1.6. Padded representation of a record

Since an implementor has to aim for a storagezatibn as close to 1 as possible, and since angegaits
of words is a cumbersome and relatively inefficipmicess, he or she must compromise. The following
considerations are relevant:

1.Padding decreases storage utilization.

2.0mission of padding may necessitate ineffiquartial word access.

3.Partial word access may cause the code (compitegram) to expand and therefore to counteract the
gain obtained by omission of padding.

In fact, considerations 2 and 3 are usually so danti that compilers always use padding automaicall
We notice that the utilization factor is always 0.5, if s > 0.5. However, if s 0.5, the utilization factor
may be significantly increased by putting more tbae array component into each word. This technisjue
calledpacking If n components are packed into a word, thezatiion factor is (see Fig. 1.7)

u = n*s/(n*s rounded up to nearest integer)

|  padded

Fig. 1.7. Packing 6 components into one word

Access to the i-th component of a packed arrayltesathe computation of the word address j in whineh
desired component is located, and it involves thmputation of the respective component position k
within the word.

j=iDIVn k = iMODn

In most programming languages the programmer isngho control over the representation of the abistra
data structures. However, it should be possibiadirate the desirability of packing at least ingh cases
in which more than one component would fit intdregke word, i.e., when a gain of storage economgby
factor of 2 and more could be achieved. We propleseonvention to indicate the desirability of pagk
by prefixing the symbol ARRAY (or RECORD) in thedlgration by the symbol PACKED.

1.7.2. Representation of Records

Records are mapped onto a computer store by sijuptgposing their components. The address of a
component (field);relative to the origin address of the recordaabed the field'offsetk;. It is computed
as

ki=g+s+..+% ko=0

where sgis the size (in words) of the j-th component. Véevrrealize that the fact that all components of an
array are of equal type has the welcome consequbatek = ixs. The generality of the record structure
does unfortunately not allow such a simple, linkarction for offset address computation, and it is
therefore the very reason for the requirementrénaird components be selectable only by fixed ilers.
This restriction has the desirable benefit that tegpective offsets are known at compile time. The
resulting greater efficiency of record field accissaell-known.

The technique of packing may be beneficial, if saleecord components can be fitted into a singleage
word (see Fig. 1.8). Since offsets are computabliané compiler, the offset of a field packed witlirnvord

may also be determined by the compiler. This mélaaison many computers packing of records causes a
deterioration in access efficiency considerablylemghan that caused by the packing of arrays.
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Fig. 1.8. Representation of a packed record

1.7.3. Representation of Sets

A sets is conveniently represented in a computer storégsbgharacteristic function C(s). This is an array
of logical values whose ith component has the nmggtiiis present in s”. As an example, the setroék
integers s={2,3,5,7, 11,13} is represertgdhe sequence of bits, by a bitstring:

C(s) = (... 0010100010101100)

The representation of sets by their characteristitcction has the advantage that the operations of
computing the union, intersection, and differen€éwm sets may be implemented as elementary logical
operations. The following equivalences, which hioldall elements i of the base type of the setack @
relate logical operations with operations on sets:

i IN(x+y) = (iIINX)OR (i INy)
i IN(x*y) = (iIINX) & (i INy)
iIIN(Xy) = (INX)&~({INY)

These logical operations are available on all digiomputers, and moreover they operate concuyrentl
all corresponding elements (bits) of a word. Itr¢fiere appears that in order to be able to implértiemn
basic set operations in an efficient manner, sets ive represented in a small, fixed number of waigbn
which not only the basic logical operations, bsbahose of shifting are available. Testing for hership

is then implemented by a single shift and a subssgisign) bit test operation. As a consequentesteof
the form x IN {c1, c2, ... , cn} can be implemedtconsiderably more efficiently than the equivalen
Boolean expression

(x=¢cl) OR (x=c2)OR ... OR (x =cn)

A corollary is that the set structure should beduzaly for small integers as elements, the largastbeing
the wordlength of the underlying computer (minus 1)

1.8. TheFileor Sequence

Another elementary structuring method is the segeleA sequence is typically a homogeneous structure
like the array. That is, all its elements are &f $ame type, thease typef the sequence. We shall denote a
sequence s with n elements by

S =<§SS -,

n is called thdéengthof the sequence. This structure looks exactlytlieearray. The essential difference is
that in the case of the array the number of elemninfixed by the array's declaration, whereastfer
sequence it is left open. This implies that it nvayy during execution of the program. Although gver
sequence has at any time a specific, finite lengthmust consider the cardinality of a sequence g
infinite, because there is no fixed limit to thequdial length of sequence variables.

A direct consequence of the variable length of seaqes is the impossibility to allocate a fixed antoof
storage to sequence variables. Instead, storageéohbe allocated during program execution, namely
whenever the sequence grows. Perhaps storage canldiened when the sequence shrinks. In any ease,
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dynamic storage allocation scheme must be empldiedtructures with variable size share this pmbpe
which is so essential that we classify them as ol structures in contrast to the fundamentatstres
discussed so far.

What, then, causes us to place the discussionqoiesees in this chapter on fundamental structurgs®
primary reason is that the storage managemenegirég sufficiently simple for sequences (in costirta
other advanced structures), if we enforce a cedanipline in the use of sequences. In fact, uridisr
proviso the handling of storage can safely be @daézhto a machanism that can be guaranteed to be
reasonably effective. The secondary reason is skgtiences are indeed ubiquitous in all computer
applications. This structure is prevalent in aBesawhere different kinds of storage media arelved) i.e.
where data are to be moved from one medium to anogsluch as from disk or tape to primary store or
vice-versa.

The discipline mentioned is the restraint to uspieatial access only. By this we mean that a sexguisn
inspected by strictly proceeding from one elemenits immediate successor, and that it is generayed
repeatedly appending an element at its end. Theetliate consequence is that elementsnatedirectly
accessiblewith the exception of the one element which autyeis up for inspection. It is this accessing
discipline which fundamentally distinguishes segq#snfrom arrays. As we shall see in Chapter 2, the
influence of an access discipline on programsasopind.

The advantage of adhering to sequential accesshyhiter all, is a serious restriction, is the tieta
simplicity of needed storage management. But everenmportant is the possibility to use effective
buffering techniques when moving data to or fromoselary storage devices. Sequential access allsws u
to feed streams of data through pipes between ifferesht media. Buffering implies the collection of
sections of a stream in a buffer, and the subsegigmment of the whole buffer content once thefdyuis
filled. This results in very significantly more efftive use of secondary storage. Given sequertizsa
only, the buffering mechanism is reasonably stitfagivard for all sequences and all media. It can
therefore safely be built into a system for geneis#, and the programmer need not be burdened by
incorporating it in the program. Such a systemssally called dile systembecause the high-volume,
sequential access devices are used for permameagstof (persistent) data, and they retain theem ev
when the computer is switched off. The unit of datathese media is commonly callegquential) file
Here we will use the terrfile as synonym tsequence

There exist certain storage media in which the setipl access is indeed the only possible one. Aynon
them are evidently all kinds of tapes. But everm@gnetic disks each recording track constitutdsrage
facility allowing only sequential access. Stricdgquential access is the primary characteristievefy
mechanically moving device and of some other osesel.

It follows that it is appropriate to distinguishtiween thedata structurethe sequence, on one hand, and
the mechanism to access elememtsthe other hand. The former is declared as a staicture, the latter
typically by the introduction of a record with asted operators, or, according to more modern
terminology, by a rider object. The distinction weén data and mechanism declarations is also ugeful
view of the fact that several access points mastexincurrently on one and the same sequenceoeach
representing a sequential access at a (possilflgyetit location.

We summarize the essence of the foregoing as fellow

1. Arrays and records are random access strucfliney. are used when located in primary, randomsacce
store.

2.Sequences are used to access data on secaatprgntial-access stores, such as disks and tapes.

3. We distinguish between the declaration of a eeqel variable, and that of an access mechanisrtetbca
at a certain position within the segence.

1.8.1 Elementary File Operators

The discipline of sequential access can be enfobgedroviding a set of seqencing operators through
which files can be accessed exclusively. Henc&oagth we may here refer to the i-th element of a
sequence s by writing, $his shall not be possible in a program.
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Sequences, files, are typically large, dynamic datactures stored on a secondary storage devicdh &
device retains the data even if a program is teatagh or a computer is switched off. Therefore the
introduction of a file variable is a complex op@atconnecting the data on the external device ith
file variable in the program. We therefore defile typeFile in a separate module, whose definition
specifies the type together with its operators.dAlethis moduld=iles and postulate that a sequence or file
variable must be explicitly initialized (opened) talling an appropriate operator or function:

VAR f: File
f := Open(name)

wherenameidentifies the file as recorded on the persistiata carrier. Some systems distinguish between
opening an existing file and opening a new file:

f := Old(name) f := New(name)

The disconnection between secondary storage anfileéheariable then must also be explicitly reqeest
by, for example, a call of Close(f).

Evidently, the set of operators must contain anratpe for generating (writing) and one for inspegti
(reading) a sequence. We postulate that thesetmperapply not to a file directly, but to an olijealled a
rider, which itself is connected with a file (sequen@)d which implements a certain access mechanism.
The sequential access discipline is guaranteedrbstective set of access operators (procedures).

A sequence is generated by appending elements extdt after having placed a rider on the file. Asisg
the declaration

VAR r: Rider
we position the rider r on the file f by the stagn
Set(r, f, pos)

where pos = 0 designates the beginning of théddguence). A typical pattern for generating trepisace
is:

WHILE more DOcompute next elementWrite(r, X) END

A sequence is inspected by first positioning arre shown above, and then proceeding from eletoent
element. A typical pattern for reading a sequesce i

Read(r, x);
WHILE ~r.eof DOprocess element Read(r, X) END

Evidently, a certain position is always associat@t every rider. It is denoted nypos Furthermore, we
postulate that a rider contain a predicate (flagdf indicating whether a preceding read operation had
reached the sequence’s end. We can now postuldtdemstribe informally the following set of primidv
operators:

la. New(f, name) defines f to be the empty sequence

1b. OId(f, name) defines fto be the sequence terdly stored with given name.

2. Set(r, f, pos) associate rider r with sequenead place it at positigmos.

3. Write(r, X) place element with value x in thggence designated by rider r, and advance.
4. Read(r, x) assign to x the value of the elerdesignated by rider r, and advance.

5. Close(f) registers the written file f in the pistent store (flush buffers).

Note Writing an element in a sequence is often a cempperation. However, mostly, files are created by
appending elements at the end.

In order to convey a more precise understandinthefequencing operators, the following examplanof
implementation is provided. It shows how they midpet expressed if sequences were represented by
arrays. This example of an implementation intergignbuilds upon concepts introduced and discussed
earlier, and it does not involve either bufferingsequential stores which, as mentioned above, reke
sequence concept truly necessary and attractiveertheless, this example exhibits all the essential

26



27

characteristics of the primitive sequence operatndependently on how the sequences are represinte
store.

The operators are presented in terms of convertmoaedures. This collection of definitions of &g
variables, and procedure headings (signaturesllisdcadefinition. We assume that we are to deal with
sequences of characters, i.e. text files whose esismare of type CHAR. The declarationsHideé and
Riderare good examples of an application of recorccsires because, in addition to the field denofireg t
array which represents the data, further fieldsegeired to denote the current length and positienthe
state of the rider.

DEFINITION Files;
TYPE File; (*sequence of characters*)
Rider = RECORD eof: BOOLEAN END ;

PROCEDURE New(VAR name: ARRAY OF CHAR): File;
PROCEDURE OId(VAR name: ARRAY OF CHAR): File;
PROCEDURE Close(VAR f: File);

PROCEDURE Set(VAR r: Rider; VAR f: File; pos: INGER);
PROCEDURE Write (VAR r: Rider; ch: CHAR);
PROCEDURE Read (VAR r: Rider; VAR ch: CHAR);

END Files.

A definition represents an abstraction. Here we are givenatbelata typesk-ile andRider, together with
their operations, but without further details rdireatheir actual representation in store. Of tiperators,
declared as procedures, we see their headings ®hig. hiding of the details of implementation is
intentional. The concept is callédformation hiding About riders we only learn that there is a proper
calledeof This flag is set, if a read operation reachesetie of the file. The rider’s position is invisible
and hence the rider’s invariant cannot be falsifigdlirect access. The invariant expresses thetatthe
position always lies within the limits given by tlssociated sequence. The invariant is establislied
procedureSet and required and maintained by proced&eadandWrite.

The statements that implement the procedures atttefuinternal details of the data types, are cfipd
in a construct callechodule Many representations of data and implementatidpsocedures are possible.
We chose the following as a simple example (witedi maximal file length):

MODULE Files;
CONST MaxLength = 4096;

TYPEFile= POINTER TO RECORD
len: INTEGER;
a: ARRAY MaxLength OF CHAR
END ;
Rider = RECORD (* 0 <= pos <= s.len <= Max Length *)
f: File; pos: INTEGER; eof: BOOLEAN
END ;

PROCEDURENew(name: ARRAY OF CHAR): File;
VAR f: File;
BEGIN NEW(f); f.length := 0; f.eof := FALSE; (*didory operation omitted*)
RETURN f
END New;
PROCEDUREDId(name: ARRAY OF CHAR): File;
VAR f: File;
BEGIN NEW(f); f.eof := FALSE; (*directory lookup oitbed*)
RETURN f
END New;

PROCEDURECIlosg(VAR f: File);
BEGIN
END Close;
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PROCEDURESet (VAR r: Rider; f: File; pos: INTEGER);
BEGIN (*assume f # NIL*) r.f:=f; r.eof := FALSE
IF pos >=0 THEN
IF pos <= s.len THEN r.pos := pos ELSE r.pos.ten END

ELSE r.pos:=0

END
END Set;
PROCEDURBEWNTite(VAR r: Rider; ch: CHAR);
BEGIN

IF (r.pos <=r.s.len) & (r.pos < MaxLength) THEN
r.a[r.pos] := ch; INC(r.pos);
IF r.pos =r.flen THEN INC(r.f.len) END
ELSE r.eof := TRUE
END
END Write;

PROCEDURERead(VAR r: Rider; VAR ch: CHAR);
BEGIN
IF r.pos < r.flength THEN ch :=r.f.a[r.pos]; G\r.pos) ELSE r.eof := TRUE END
END Read;
END Files.

Note that in this example the maximum length tlegfLeences may reach is an arbitrary constant. Skeould
program cause a sequence to become longer, thenvthild not be a mistake of the program, but an
inadequacy of this implementation. On the otherdhanread operation proceeding beyond the curraht e
of the sequence would indeed be the program's keistdere, the flag.eof is also used by the write
operation to indicate that it was not possible ¢ofgrm it. Hence, ~r.eof is a precondition for b&bad
and Write.

1.8.2. Buffering sequences

When data are transferred to or from a secondaragt device, the individual bits are transferrecha
stream. Usually, a device imposes strict timingst@ints upon the transmission. For example, & dae
written on a tape, the tape moves at a fixed spaddequires the data to be fed at a fixed rateeWhe
source ceases, the tape movement is switched dfspeed decreases quickly, but not instantaneously.
Thus a gap is left between the data transmittedttamdiata to follow at a later time. In order thiage a
high density of data, the number of gaps oughtedképt small, and therefore data are transmitted in
relatively large blocks once the tape is movingni&ir conditions hold for magnetic disks, where ttaa

are allocated on tracks with a fixed number of kdoef fixed size, the so-called block size. In factisk
should be regarded as an array of blocks, eaclk bleing read or written as a whole, containing sy

2X bytes with k = 8, 9, ... 12.

Our programs, however, do not observe any suchgiroonstraints. In order to allow them to ignore th
constraints, the data to be transferred are bufféfbey are collected in a buffer variable (in msiare)
and transferred when a sufficient amount of datac@imulated to form a block of the required sidee
buffer’s client has access only via the two proceddepositandfetch

DEFINITION Buffer;
PROCEDURE deposit(x: CHAR);
PROCEDURE fetch(VAR x: CHAR);
END Buffer.

Buffering has an additional advantage in allowihg process which generates (receives) data to guoce
concurrently with the device that writes (reads) thata from (to) the buffer. In fact, it is convemt to
regard the device as a process itself which me@bjes data streams. The buffer's purpose is tdde@
certain degree of decoupling between the two pessgswhich we shall call thproducer and the
consumerlf, for example, the consumer is slow at a carmbment, it may catch up with the producer
later on. This decoupling is often essential fayoad utilization of peripheral devices, but it lady an
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effect, if the rates of producer and consumer hoauathe same on the average, but fluctuate astiftee
degree of decoupling grows with increasing buffee s

We now turn to the question of how to representtieb, and shall for the time being assume tha& dat
elements are deposited and fetched individualieats of in blocks. A buffer essentially constitusefrst-
in-first-out queue (fifo). If it is declared as array, two index variables, sayandout, mark the positions
of the next location to be written into and to lead from. Ideally, such an array should have nexnd
bounds. A finite array is quite adequate, howeeensidering the fact that elements once fetchechare
longer relevant. Their location may well be re-uséHis leads to the idea of thwdrcular buffer The
operations of depositing and fetching an elemeeatexpressed in the following module, which exports
these operations as procedures, but hides therharfte its index variables - and thereby effectivibly
buffering mechanism - from the client processess Tirechanism also involves a variable n countirgg th
number of elements currently in the buffer. If N\ndtes the size of the buffer, the condition A< N is an
obvious invariant. Therefore, the operatif@ich must be guarded by the condition n > 0 (buffer-non
empty), and the operatiodepositby the condition n < N (buffer non-full). Not mee the former
condition must be regarded as a programming esroiplation of the latter as a failure of the sugigd
implementation (buffer too small).

MODULE Buffer; (*implements circular buffers*)
CONST N =1024; (*buffer size*)
VAR n, in, out:INTEGER;
buf: ARRAY N OF CHAR;

PROCEDURHIeposit(x: CHAR);
BEGIN

IFn=N THEN HALT END ;

INC(n); buf[in] ;= x; in := (in + 1) MOD N
END deposit;

PROCEDURHKetch(VAR x: CHAR);
BEGIN

IFn=0THEN HALT END ;

DEC(n); x := buf[out]; out := (out + 1) MOD N
END fetch;

BEGINNn:=0;in:=0;o0ut:=0
END Buffer.

This simple implementation of a buffer is accepgatntly, if the proceduredepositandfetchare activated

by a single agent (once acting as a producer, asca consumer). If, however, they are activated by
individual, concurrent processes, this schemedsimplistic. The reason is that the attempt tood@pnto

a full buffer, or the attempt to fetch from an egnpuffer, are quite legitimate. The execution ofgl
actions will merely have to be delayed until thamgling conditions are established. Such delayséalig
constitute the necessary synchronization amongucoetd processes. We may represent these delays
respectively by the statements

REPEAT UNTILn <N
REPEAT UNTILn>0
which must be substituted for the two conditione®lH statements.

1.8.3. Buffering between Concurrent Processes

The presented solution is, however, not recommeraleash if it is known that the two processes aneetr
by two individual engines. The reason is that the processors necessarily access the same vamigdhel
therefore the same store. The idling process, bgtaatly polling the value n, hinders its partiEcause
at no time can the store be accessed by more taprocess. This kind of busy waiting must indeed b
avoided, and we therefore postulate a facility thakes the details of synchronization less expiicifact
hides them. We shall call this facilitységgnal and assume that it is available from a utilitydule Signals
together with a set of primitive operators on signa



30

Every signal s is associated with a guard (conujitiB,. If a process needs to be delayed ungilisP
established (by some other process), it must, befwoceeding, wait for the signal s. This is to be
expressed by the statement Wait(s). If, on therdthad, a process establishgsitthereupon signals this
fact by the statement Send(s). Ifi® the established precondition to every staterSenid(s), then fan

be regarded as a postcondition of Wait(s).

DEFINITION Signals;
TYPE Signal;
PROCEDURE Wait(VAR s: Signal);
PROCEDURE Send(VAR s: Signal);
PROCEDURE Init(VAR s: Signal);
ENDSignals.

We are now able to express the buffer module iorm that functions properly when used by individual
concurrent processes:

MODULE Buffer;
IMPORT Signals;
CONST N =1024; (*buffer size*)
VAR n, in, out: INTEGER;
nonfull: Signals.Signal; (*n < N*)
nonempty: Signals.Signal; (*n > 0%)
buf: ARRAY N OF CHAR;

PROCEDURHleposit(x: CHAR);
BEGIN
IF n =N THEN Signals.Wait(nonfull) END ;
INC(n); buflin] :=x; in := (in + 1) MOD N;
IF n =1 THEN Signals.Send(nonempty) END
END deposit;

PROCEDUREetch(VAR x: CHAR);

BEGIN
IF n =0 THEN Signals.Wait(honempty) END ;
DEC(n); x := buf[out]; out := (out + 1) MOD;N
IF n = N-1 THEN Signals.Send(nonfull) END

END fetch;

BEGIN n :=0; in := 0; out := 0; Signals.Init(notijy Signals.Init(honempty)
END Bufferl.

An additional caveat must be made, however. Thersetfails miserably, if by coincidence both consume
and producer (or two producers or two consumetsh fthe counter value n simultaneously for updating
Unpredictably, its resulting value will be eitherInor n-1, but not n. It is indeed necessary tdgutathe
processes from dangerous interference. In geredfadperations that alter the values of sharedabdées
constitute potential pitfalls.

A sufficient (but not always necessary) conditisrihiat all shared variables be declared localtmdule
whose procedures are guaranteed to be executedrmanteal exclusionSuch a module is calledh@onitor
[1-7]. The mutual exclusion provision guarantees et any time at most one process is actively gewja

in executing a procedure of the monitor. Shouldtleeroprocess be calling a procedure of the (same)
monitor, it will automatically be delayed until tfiest process has terminated its procedure.

Note: By actively engaged is meant that a processute a statement other than a wait statement.

At last we return now to the problem where the posd or the consumer (or both) require the dataeto
available in a certain block size. The followingdnée is a variant of the one previously shown, assg

a block size of Ndata elements for the producer, and gelments for the consumer. In these cases, the
buffer size N is usually chosen as a common meltgdIN, and N. In order to emphasise that symmetry
between the operations of fetching and depositaig,dhe single counter n is now represented by two



counters, namely ne and nf. They specify the nusnbEempty and filled buffer slots respectively. $ih

the consumer is idle, nf indicates the number efmeints needed for the consumer to proceed; and when
the producer is waiting, ne specifies the numbearleents needed for the producer to resume. (ftiere
ne+nf= N does not always hold).

Fig. 1.9. Circular buffer with indicas andout

MODULE Buffer;
IMPORT Signals;

CONST Np = 16; (*size of producer block*)
Nc = 128; (*size of consumer block*)
N =1024; (*buffer size, common multipleMp and Nc*)

VAR ne, nf; INTEGER,;
in, out: INTEGER,;
nonfull: Signals.Signal; (*ne >= 0%)
nonempty: Signals.Signal; (*nf>= 0*)
buf: ARRAY N OF CHAR,;

PROCEDURHIeposit(VAR x: ARRAY OF CHAR);
BEGIN ne := ne - Np;
IF ne < 0 THEN Signals.Wait(nonfull) END ;
FORi:= 0 TO Np-1 DO buffin] := x[i]; INC(nEND ;
IFin=NTHEN in:=0END;
nf :=nf+ Np;
IF nf >= 0 THEN Signals.Send(honempty) END
END deposit;

PROCEDURHetch(VAR x: ARRAY OF CHAR);
BEGIN nf := nf - Nc;
IF nf< 0 THEN Signals.Wait(honempty) END ;
FOR i := 0 TO Nc-1 DO x]i] := buf[out]; INC(d) END;
IF out =N THEN out := 0 END ;
ne := ne + Nc;
IF ne >= 0 THEN Signals.Send(nonfull) END
END fetch;

BEGIN

ne := N; nf:=0; in := 0; out := 0; Signalst(mionfull); Signals.Init(honempty)
END Buffer.

1.8.4 Textual Input and Output

By standard input and output we understand thesfearof data to (from) a computer system from (to)
genuinely external agents, in particular its huroparator. Input may typically originate at a keytsband
output may sink into a display screen. In any cése;haracteristic is that it is readable, antyptically
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consists of a sequence of characters. It is a TéMs$. readability condition is responsible for wetother
complication incurred in most genuine input andpatitoperations. Apart from the actual data transfer
they also involve a transformation of representatieor example, numbers, usually considered asiatom
units and represented in binary form, need be foamgd into readable, decimal notation. Structuresd

to be represented in a suitable layout, whose géoeris called formatting.

Whatever the transformation may be, the concepthef sequence is once again instrumental for a
considerable simplification of the task. The kethis observation that, if the data set can be dersil as a
sequence of characters, the transformation ofahaence can be implemented as a sequence of @lgnti
transformations of elements.

T(<s0, s1, ..., sn-1>) = <T(s0), T(sl), ...sA-L)>

We shall briefly investigate the necessary openatifor transforming representations of natural nersb
for input and output. The basis is that a numbepresented by the sequence of decimal digits<d,z,
..., 0, d> has the value

x = Si:i=0.. n-1:¢* 10
X = thox10" + dx10"2+ ... + ¢x10 + g
X = (... ((¢h1x10) + 4. x10 + ... + d@x10) +

Assume now that the sequence d is to be read andférmed, and the resulting numeric value to be
assigned to x. The simple algorithm terminates whth reading of the first character that is notigit.d
(Arithmetic overflow is not considered).

x := 0; Read(ch);
WHILE ("0" <= ch) & (ch <= "9") DO

x := 10*x + (ORD(ch) - ORD("0"); Read(ch)
END

In the case of output the transformation is comifitgk by the fact that the decomposition of x idicimal
digits yields them in the reverse order. The leligit is generated first by computing x MOD 10. §hi
requires an intermediate buffer in the form ofratfin-last-out queue (stack). We represent itraareay d
with index i and obtain the following program:

i:=0;

REPEAT d[i] := x MOD 10; x := x DIV 10; INC(i)
UNTIL x = 0;

REPEAT DEC(i); Write(CHR(d[i] + ORD("0"))
UNTILi=0

Note: A consistent substitution of the constantiri@ese algorithms by a positive integer B wilelg
number conversion routines to and from represemstivith base B. A frequently used case is B = 16
(hexadecimal), because the involved multiplicatiand divisions can be implemented by simple slifts
the binary numbers.

Obviously, it should not be necessary to speciég¢hubiquitous operations in every program indathil.

We therefore postulate a utility module that pregidthe most common, standard input and output
operations on humbers and strings. This modulefeyenced in most programs throughout this boo#t, an
we call it Texts It defines a typel'ext, Readerand Writers for Texts, and procedures for reading and
writing a character, an integer, a cardinal numbieg, string.

Before we present the definition of moddlexts we point out an essential asymmetry between iapdt
output of texts. Whereas a text is generated bagaence of calls of writing procedures, writingemgrs,
real numbers, strings etc., reading a text by aieep of calls of reading procedures is questi@nabl
practice. This is because we rather wish to readnttxt element without having to know its type. We
rather wish to determine its ty@dter reading the item. This leads us to the concept sfannerwhich,
after each scan allows to inspect type and valubeoftem read. A scanner acts like a rider indhge of
files. However, it imposes a certain syntax on thet to be read. We postulate a scanner for texts



consisting of a sequence of integers, real numistrisgs, names, and special characters given &y th
following syntax specified in EBNF (Extended Backlegur Form):

item = integer | RealNumber | identifier | strjr§pecialChar.

integer = [“-“] digit {digit}.

RealNumber =["-“] digit {digit} ,..“ digit {digit} [(,E*|.D“)[.*"]|.-" digit {digit}].

identifier =  letter {letter | digit}.

string = " {any character except quote} ™.

SpecialChar = "1" | "2" | "@" | “#" | "$" | "06" [ | "&" | " | "= | |1 VP ¢ )T
SRR IR A A e

Items are separated by blanks and/or line breaks.

DEFINITION Texts;
CONST Int = 1; Real = 2; Name = 3; Char = 4;
TYPE Text, Writer;
Reader = RECORD eot: BOOLEAN END ;
Scanner = RECORD class: INTEGER,;
i INTEGER;
x: REAL;
s: ARRAY 32 OF CHAR,;
ch: CHAR;
nextCh: CHAR
END ;
PROCEDURE OpenReader(VAR r: Reader; t: Text; pd$HGER);
PROCEDURE OpenWriter(VAR w: Writer; t: Text; poSITEGER);
PROCEDURE OpenScanner(VAR s: Scanner; t: Text; DOBEGER);
PROCEDURE Read(VAR r: Reader; VAR ch: CHAR);
PROCEDURE Scan(VAR s: Scanner);

PROCEDURE Write(VAR w: Writer; ch: CHAR);
PROCEDURE WriteLn(VAR w: Writer);  (*terminatenie*)
PROCEDURE WriteString((VAR w: Writer; s: ARRAY OFHAR);

PROCEDURE WriteInt((VAR w: Writer; x, n: INTEGER);
(*write integer x with (at least) n characters.
If n is greater than the number of digitsdezt
blanks are added preceding the number*)

PROCEDURE WriteReal((VAR w: Writer; x: REAL);
PROCEDURE Close(VAR w: Writer);

END Texts.
Hence we postulate that after a calSatin(S)

S.class = Int implies  S.i is the integer read

S.class=Real implies S.x isthe real numbet rea

S.class=Name implies S.s is the identifiertohg read
S.class=Char implies S.ch is the special charaead

nextChis the character immediately following the reauirit possibly a blank.

1.9. Searching

The task of searching is one of most frequent djp@sin computer programming. It also provides an
ideal ground for application of the data structigedar encountered. There exist several basiat@ns of
the theme of searching, and many different algowtthave been developed on this subject. The basic
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assumption in the following presentations is that¢ollection of data, among which a given elenieitd
be searched, is fixed. We shall assume that thisf $¢ elements is represented as an array, say as

a: ARRAY N OF Item

Typically, the type item has a record structurehwét field that acts as a key. The task then cansikt
finding an element of a whose key field is equaktgiven search argument x. The resulting index i,
satisfying a[i].key = x, then permits access to dieer fields of the located element. Since we hame
interested in the task of searching only, and dacace about the data for which the element wascked

in the first place, we shall assume that the tygm consists of the key only, iie the key.

1.9.1. Linear Search

When no further information is given about the skad data, the obvious approach is to proceed
sequentially through the array in order to increstep by step the size of the section, where tsgatk
element is known not to exist. This approach ideddinear search There are two conditions which
terminate the search:

1. The element is found, i.g.=ax.
2. The entire array has been scanned, and no magfound.

This results in the following algorithm:
i:=0;
WHILE (i < N) & (a[i] # x) DO INC(i) END

Note that the order of the terms in the Booleanre&sgion is relevant. The invariant, i.e the cooditi
satisfied before each incrementing of the indéx i,

(0<i<N)&(Ak:0<k<i:a#Xx)

expressing that for all values of k less than imatch exists. From this and the fact that the $earc
terminates only if the condition in the while-claus false, the resulting condition is derived as

((=N)OR (a=x)) & (Ak : 0 <k <i:@#Xx)

This condition not only is our desired result, bigto implies that when the algorithm did find a chatit
found the one with the least index, i.e. the fins¢. i = N implies that no match exists.

Termination of the repetition is evidently guarattebecause in each step i is increased and therefo
certainly will reach the limit N after a finite ndrer of steps; in fact, after N steps, if no matdsts.

Each step evidently requires the incrementing efitfdex and the evaluation of a Boolean expression.
Could this task be simplifed, and could the sedhaneby be accelerated? The only possibility ies
finding a simplification of the Boolean expressiohich notably consists of two factors. Hence, thé/o
chance for finding a simpler solution lies in e$idbng a condition consisting of a single factbatt
implies both factors. This is possible only by gudeeing that a match will be found, and is aclidwe
posting an additional element with value x at thé ef the array. We call this auxiliary elemergeatine)
because it prevents the search from passing bekeriddex limit. The arrag is now declared as

a: ARRAY N+1 OF INTEGER
and the linear search algorithm with sentinel igrezsed by

a[N]:=x;i:=0;
WHILE a[i] # x DO INC(i) END

The resulting condition, derived from the same ifargt as before, is
(a=x)&Ak:0<k<i:ag#Xx)
Evidently, i = N implies that no match (except tfatthe sentinel) was encountered.

1.9.2. Binary Search



There is quite obviously no way to speed up a kearoless more information is available about the
searched data. It is well known that a search @ambade much more effective, if the data are ordered
Imagine, for example, a telephone directory in Whtee names were not alphabetically listed. It \wdae
utterly useless. We shall therefore present anrithgo which makes use of the knowledge thats
ordered, i.e., of the condition

Aki1<k<N:ai1<x

The key idea is to inspect an element picked atalam say am, and to compare it with the searchnaegti
x. If it is equal to x, the search terminatest ikiless than x, we infer that all elements witllices less or
equal to m can be eliminated from further searched;if it is greater than x, all with index greate equal
to m can be eliminated. This results in the follogvialgorithm calledbinary search it uses two index
variables L and R marking the left and at the righd of the section & in which an element may still be
found.

L :=0; R :=N-1; found := FALSE ;
WHILE (L <R) & ~found DO
m :=any value between L and R
IF a[m] = x THEN found := TRUE
ELSIF ajm] <x THEN L := m+1
ELSER :=m-1
END
END

The loop invariant, i.e. the condition satisfieddse each step, is
(L<R)&(Ak:0<k<L:g<x)&((Ak:R<k<N:@a>Xx)
from which the result is derived as
found OR ((L>R) & Ak :0<k<L:g<x)&(Ak:R<k<N:a>Xx))
which implies
(Bn=X) OR Ak:0<k<N:a#Xx)

The choice of m is apparently arbitrary in the setisat correctness does not depend on it. Butésdo
influence the algorithm's effectiveness. Clearly goal must be to eliminate in each step as maamenhts

as possible from further searches, no matter Wigabtitcome of the comparison is. The optimal smiuis

to choose the middle element, because this eliesnbtlf of the array in any case. As a result, the
maximum number of steps is dgj rounded up to the nearest integer. Hence, tigithm offers a drastic
improvement over linear search, where the expeuietber of comparisons is N/2.

The efficiency can be somewhat improved by intenglrag the two if-clauses. Equality should be tested
second, because it occurs only once and causeigagion. But more relevant is the question, whethars

in the case of linear search -- a solution couldbhed that allows a simpler condition for terntioa. We
indeed find such a faster algorithm, if we abanti@nnaive wish to terminate the search as soomesch

is established. This seems unwise at first glabce,on closer inspection we realize that the gain i
efficiency at every step is greater than the lassarred in comparing a few extra elements. Remeitiiagr
the number of steps is at most log N. The fastettisa is based on the following invariant:

(Ak:0<k<L:g<x) & AK:R<k<N:a>Xx)
and the search is continued until the two sectipas the entire array.

L:=0;R:=N;
WHILE L< R DO

m := (L+R) DIV 2;

IFa[m] <x THEN L :=m+1 ELSE R :=m END
END

The terminating condition is & R. Is it guaranteed to be reached? In ordertabksh this guarantee, we
must show that under all circumstances the diffieeeR-L is diminished in each step. L < R holdshat t
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beginning of each step. The arithmetic mean m Hatisfies L< m < R. Hence, the difference is indeed
diminished by either assigning m+1 to L (increaslkjgor m to R (decreasing R), and the repetition
terminates with L = R. However, the invariant and R do not yet establish a match. Certainly, & R,

no match exists. Otherwise we must take into cematbn that the element a[R] had never been
compared. Hence, an additional test for equalil®] & x is necessary. In contrast to the first Sohutthis
algorithm -- like linear search -- finds the matahielement with the least index.

1.9.3 Table Search

A search through an array is sometimes also callatble search particularly if the keys are themselves
structured objects, such as arrays of numbersaracters. The latter is a frequently encounterse;dhe
character arrays are called strings or words. &etafine a typ&tring as

String = ARRAY M OF CHAR
and let order on strings x and y be defined agvl
(x=y) = A:0<j<M:x=Y)
(x<y) = EiO<i<N:(A:0<j<i:x=Vy) & X <W)

In order to establish a match, we evidently musd fll characters of the comparands to be equah Su
comparison of structured operands therefore tunh$oobe a search for an unequal pair of comparamrds
a search for inequality. If no unequal pair existgyality is established. Assuming that the lerajtthe
words be quite small, say less than 30, we shalbugear search in the following solution.

In most practical applications, one wishes to aesistrings as having a variable length. This is
accomplished by associating a length indicatiom w#ch individual string value. Using the type desd
above, this length must not exceed the maximumthekly This scheme allows for sufficient flexibilifgr
many cases, yet avoids the complexities of dynasticage allocation. Two representations of string
lengths are most commonly used:

1. The length is implicitly specified by appendiagerminating character which does not otherwisaioc
Usually, the non-printing value 0X is used for thsrpose. (It is important for the subsequent
applications that it be tHeastcharacter in the character set).

2.The length is explicitly stored as the firstradt of the array, i.e. the string s has the form

S = 5, Sl! SQ! ey $l-l
where g ... s.1 are the actual characters of the string ared GHR(N). This solution has the advantage
that the length is directly available, and the disatage that the maximum length is limited to stz
of the character set, that is, to 256 in the c&slesoASCI| set.

For the subsequent search algorithm, we shall adioethe first scheme. A string comparison theregak
the form

{/\'/ﬁﬁ_’E (x[i] = Y[i]) & (X[i] # 0X) DO i := i+1 END

The terminating character now functions as a sehtihe loop invariant is
Aj0<j<i:x=y#0X,

and the resulting condition is therefore
(X =y¥)OR (x=0X)) & (Aj: 0 <j<i:x=y#0X)

It establishes a match between x and y, providatt y;, and it establishes x <y, if X y;.

We are now prepared to return to the task of tabsching. It calls for a nested search, namebasch
through the entries of the table, and for eachyemtsequence of comparisons between components. For
example, let the table T and the search argumbatdefined as

T: ARRAY N OF String;

X: String
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Assuming that N may be fairly large and that theleds alphabetically ordered, we shall use a lyinar
search. Using the algorithms for binary search stnithg comparison developed above, we obtain the
following program segment.

L:=0;R:=N;
WHILE L< R DO
m := (L+R) DIV 2;i:=0;
WHILE (T[m,i] = X][i]) & (X[i] # OC) DO i:=i+1 END ;
IF T[m,i] <x[i] THEN L :=m+1 ELSE R := m END
END ;
IFR<NTHENI:=0;
WHILE (T[R,i] = x[i]) & (x[i] # 0X) DO i := i+1 END
END
(* (R <N) & (T[R,i] = X[i]) establish a match*)

1.9.4. Straight String Search

A frequently encountered kind of search is the alted string searchlt is characterized as follows. Given
an array s of N elements and an array p of M elésnarhere 0 < M < N, declared as

s: ARRAY N OF Item
p: ARRAY M OF Item

string search is the task of finding the first acence of p in s. Typically, the items are chanagtthen s
may be regarded as a text and p as a pattern dr, aod we wish to find the first occurrence of tierd in
the text. This operation is basic to every textcpssing system, and there is obvious intereshtirfg an
efficient algorithm for this task. Before payingripeular attention to efficiency, however, let ussf
present a straightforward searching algorithm. Y&l €all it straight string search

A more precise formulation of the desired resulagkarch is indispensible before we attempt toifgpan
algorithm to compute it. Let the result be the kdevhich points to the first occurrence of a matétthe
pattern within the string. To this end, we introdwcpredicate P(i,))

P@G,j) = Ak:0<k<j:Sxk=p
Then evidently our resulting index i must satis{y, ®1). But this condition is not sufficient. Becsaithe
search is to locate thfest occurrence of the pattern, P(k, M) must be fatseafl k < i. We denote this
condition by Q(i).

Q) = Ak:0<k<i:~P(k, M)

The posed problem immediately suggests to formulaesearch as an iteration of comparisons, and we
proposed the following approach:

i=-1;
REPEAT INC(i); (* Q(i) )
found = P(i, M)

UNTIL found OR (i = N-M)

The computation of P again results naturally intaration of individual character comparisons. Wihen
apply DeMorgan's theorem to P, it appears thatitdration must be a search for inequality among
corresponding pattern and string characters.

PG, ) = Ak:0<k<j:su=p) = (Ek:0<k<j:sw#pJ)
The result of the next refinement is a repetitidthinv a repetition. The predicates P and Q areriedeat
appropriate places in the program as comments. dbiegs invariants of the iteration loops.
i=-1;
REPEAT INC(i); j := 0; (* Q(i) *)
WHILE (j < M) & (s[i+j] = p[j]) DO (* P(i, j+1) *) INC(j) END
(* Q() & P(i, ) & (( = M) OR (s[i+]] # p[il)) *)



UNTIL (j = M) OR (i = N-M)

The term j = M in the terminating condition indesmtresponds to the conditidound because it implies
P(i,M). The term i = N-M implies Q(N-M) and therebhe nonexistence of a match anywhere in the string
If the iteration continues with j < M, then it mudb so with §; # p. This implies ~P(i,j), which implies
Q(i+1), which establishes Q(i) after the next imeesting of i.

Analysis of straight string searchThis algorithm operates quite effectively, if wan assume that a
mismatch between character pairs occurs after at enfew comparisons in the inner loop. This isliikto

be the case, if the cardinality of the item typ&aige. For text searches with a character setx$iz28 we
may well assume that a mismatch occurs after irisged or 2 characters only. Nevertheless, the wors
case performance is rather alarming. ConsidexXample, that the string consist of N-1 A's follalWey a
single B, and that the pattern consist of M-1 Akofved by a B. Then in the order of N*M comparison
are necessary to find the match at the end ofttimgsAs we shall subsequently see, there forelgaxist
methods that drastically improve this worst cadbsur.

1.95. TheKnuth-Morris-Pratt String Search

Around 1970, D.E. Knuth, J.H. Morris, and V.R. Pmatented an algorithm that requires essentiallthie
order of N character comparisons only, even invibest case [1-8]. The new algorithm is based on the
observation that by starting the next pattern caispa at its beginning each time, we may be disogrd
valuable information gathered during previous corispas. After a partial match of the beginning tod t
pattern with corresponding characters in the strivigindeed know the last part of the string, aachaps
could have precompiled some data (from the pattehigh could be used for a more rapid advanceén th
text string. The following example of a search the word Hooligan illustrates the principle of the
algorithm. Underlined characters are those whichewsmpared. Note that each time two compared
characters do not match, the pattern is shiftethalivay, because a smaller shift could not pogéald to

a full match.

Hool a- Hool a girls |ike Hooligans.

Hool i gan
Hool i gan
Hool i gan
Hool i gan
Hool i gan
Hool i gan
Hool i gan
Using the predicates P and Q, the KMP-algoriththésfollowing:
i:=0;j:=0;

WHILE (j < M) & (i < N) DO

(* Q(i-) & P(i-j, ) *)

WHILE (j >= 0) & (s[i] # p[j) DO j:= D END ;
INC(i); INC())

END

This formulation is admittedly not quite complebmcause it contains an unspecified shift value . W
shall return to it shortly, but first point out ththe conditions Q(i-j) and P(i-j, j) are maintaihas global
invariants, to which we may add the relations i0< N and 0<j < M. This suggests that we must abandon
the notion that i always marks the current positidrthe first pattern character in the text. Rathbe
alignment position of the pattern is now i-j.

If the algorithm terminates due to j = M, the teRfi-j, j) of the invariant implies P(i-M, M), thas, a
match at position i-M. Otherwise it terminates withN, and since j < M, the invariant Q(i) impli#sat no
match exists at all.

We must now demonstrate that the algorithm nevisifitzss the invariant. It is easy to show thatst i
established at the beginning with the values £9j Let us first investigate the effect of the tstatements
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incrementing i and j by 1. They apparently neitreggresent a shift of the pattern to the right, dothey
falsify Q(i-j), since the difference remains unched. But could they falsify P(i-j, j), the secorattor of
the invariant? We notice that at this point thgai®n of the inner while clause holds, i.e. either0 or si
= pj. The latter extends the partial match andbdistees P(i-j, j+1). In the former case, we pogstilidat
P(i-j, j+1) hold as well. Hence, incrementing bo#nd j by 1 cannot falsify the invariant eitheheTonly
other assignment left in the algorithm is j := De\8hall simply postuate that the value D alwaysuizh
that replacing j by D will maintain the invariant.

In order to find an appropriate expression for & must first understand the effect of the assignmen
Provided that D < j, it represents a shift of ttatg@rn to the right by j-D positions. Naturally, weésh this
shift to be as large as possible, i.e., D to benzall as possible. This is illustrated by Fig. 1.10

+ABC

|ABC

I I I
+ string % A|lB|C]|D %
I I A

B|C|E |

pattern

—» m O |[<+—

D=0 Tj:O

1
w

Fig. 1.10. Assignment j := D shifts pattern by pbDsitions

Evidently the condition P(i-D, D) & Q(i-D) must lbbefore assigning D to j, if the invariant P(j)j &
Q(i-)) is to hold thereafter. This precondition tieerefore our guideline for finding an appropriate
expression for D. The key observation is that tisaokP(i-j, j) we know that

Sj...8%1 = P...P1

(we had just scanned the first j characters optiteern and found them to match). Therefore thelition
P(i-D, D) with D<j, i.e.,

Po...Pb1 = Sp . $1
translates into

Po...P1 = Bo . PB1

and (for the purpose of establishing the invariaot€(i-D)) the predicate ~P(i-k, M) for k = 1 j:D
translates into

Po... 1 # Pk...p1 forallk=1..jD

The essential result is that the value D apparésttietermined by the pattern alone and does ok
on the text string. The conditions tell us thabdider to find D we must, for every j, search foe #mallest
D, and hence for the longest sequence of pattesiracters just preceding position j, which matches a
equal number of characters at the beginning optitern. We shall denote D for a given j by dj.cgin
these values depend on the pattern only, the auxitable d may be computed before starting theahct
search; this computation amounts to a precompilat the pattern. This effort is evidently only
worthwhile if the text is considerably longer ththe pattern (M << N). If multiple occurrences o ttame
pattern are to be found, the same values of d eaeimsed. The following examples illustrate thecfiom
ofd.



40

examples | liJ

string % aAlalalalalc % j=5, ds=4, (max. shift =j-d=1)
Po... P3 = P1... Pa

pattern ! Alalalalals |

shifted pattern

Po... P1= P3... Pa
| Po... P27 P2... Pa
Po... P3 % P1... Pa

% aAlslclalelo % =5, ds=2, (max. shift =j-di=3)
C
C

% aAlslclolela % j=5, ds=0, (max. shift =j-di=5)
Po... Po % Pa... Pa
| AlBlclDl|lEI|F | Po... P1# P3... Pa

| Po... P2 # P2... Pa

AlB|c % Po-.. Ps # Pi... Pa

I
Fig. 1.11. Partial pattern matches and computatiaf

The last example in Fig. 1.11 suggests that wedcaeven slightly better; had the character pj berer
instead of an F, we would know that the correspamdiring character could not possibly be an Aabse

si # pj terminated the loop. Hence a shift of 5 could lead to a later match either, and we might dé we
increase the shift amount to 6 (see Fig 1.12, uppet). Taking this into consideration, we redefthe
computation of dj as the search for the longesthiiag sequence

Po .- Ry = Bapg -+ B

with the additional constraint ofyp # p;. If no match exists at all, we letd -1, indicating that the entire
pattern be shifted beyond its current position (Sgel.12, lower part).

I I I
string % AlB|C|D|E]|F %
I

A[(B|C|[D]|E|A | |

pattern

shifted pattern AlB %

i=5, ds=-1, (shift = j - di= 6)



Fig. 1.12. Shifting pattern past position of lasaacter

Evidently, the computation of @gresents us with the first application of strieguzh, and we may as well
use the fast KMP version itself.

PROCEDURE Search(VAR p, s: ARRAY OF CHAR; m, n: INGER; VAR r: INTEGER);
(*search for pattern p of length m in text safidth n; m <= Mmax*)
(*if p is found, then r indicates the positiongnotherwise r = -1*)
VAR i, j, ki INTEGER;
d: ARRAY Mmax OF INTEGER,;
BEGIN j:=0; k :=-1; d[0] :=-1; (*compute d fro p*)
WHILE j < m-1 DO
WHILE (k >=0) & (p[i] # p[K]) DO k := d[k] BND ;

INC(j); INC(K);
IF p[j] = p[k] THEN d[j] := d[k] ELSE d[j] :=k END
END ;

i:=0;j:=0;k:=0; (*search p in s*)
WHILE (j<m) & (i<n) DO
WHILE (j >= 0) & (s[i] # p[i]) DO j := d[j] END ;
INC(i); INC(j)
END ;
IFj=m THEN r :=i-m ELSE r := -1 END
END Search

Analysis of KMP search. The exact analysis of tadggmance of KMP-search is, like the algorithnelits
very intricate. In [1-8] its inventors prove thhetnumber of character comparisons is in the artibt+N,
which suggests a substantial improvement over MdN the straight search. They also point out the
welcome property that the scanning pointer i ndyaks up, whereas in straight string search the sca
always begins at the first pattern character afterismatch, and therefore may involve charactexstad
actually been scanned already. This may cause aukprablems when the string is read from secondary
storage where backing up is costly. Even when tipeiti is buffered, the pattern may be such that the
backing up extends beyond the buffer contents.

1.9.6. TheBoyer-Moore String Search

The clever scheme of the KMP-search yields genpamefits only if a mismatch was preceded by a @arti
match of some length. Only in this case is thegpatshift increased to more than 1. Unfortunatiig is

the exception rather than the rule; matches ocawehnmore seldom than mismatches. Therefore the gain
in using the KMP strategy is marginal in most casfasormal text searching. The method to be dississ
here does indeed not only improve performance énwibrst case, but also in the average case. It was
invented by R.S. Boyer and J.S. Moore around 188 we shall call it BM search. We shall here prese

a simplified version of BM-search before proceedimghe one given by Boyer and Moore..

BM-search is based on the unconventional ideaatd @ mparing characters at the end of the pat&ther
than at the beginning. Like in the case of KMP-glkeathe pattern is precompiled into a tathlbefore the
actual search starts. Let, for every charagtan the character setix be the distance of the rightmost
occurrence of x in the pattern from its end. Nosuase that a mismatch between string and pattern was
discovered. Then the pattern can immediately biéeshio the right by ghy.;; positions, an amount that is
quite likely to be greater than 1. Ifyp does not occur in the pattern at all, the shiévien greater, namely
equal to the entire pattern's length. The followexgmple illustrates this process.

Hool a- Hool a girls |ike Hooligans.

Hool i gan
Hool i gan
Hool i gan

Hool i gan
Hool i gan
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Since individual character comparisons now prodeeah right to left, the following, slightly modifi
versions of of the predicates P and Q are moreeroest.

P(@i)) = AKj<k<M: s =P
Q) = Ak 0<k<i:~P(,0)

These predicates are used in the following fornmrabf the BM-algorithm to denote the invariant
conditions.
i=M;j:=M;
WHILE (j > 0) & (i<=N) DO
(* QU-M) ) j:=M; k:=i;
WHILE (j > 0) & (s[k-1] = p[j-1]) DO
(* P(kj, ) & (k-] = i-M) *)
DEC(k); DEC())
END ;
i:=1i+d[s[i-1]]
END

The indices satisfy 0 <j< M and 0 < i,k < N. Téfere, termination with j = 0, together with P (k)
implies P(k, 0), i.e., a match at position k. Teration with j > 0 demands that i = N; hence Q(iimplies
Q(N-M), signalling that no match exists. Of couxge still have to convince ourselves that Q(i-M) and
P(k-j, j) are indeed invariants of the two repetis. They are trivially satisfied when repetitidarts, since
Q(0) and P(x,M) are always true.

Let us first consider the effect of the two statataedecrementing k and j. Q(i-M) is not affectedda
since §; = pu1 had been established, P(k-j, j-1) holds as prdtond guaranteeing P(k-j, j) as
postcondition. If the inner loop terminates with (), the fact that,s # p;1 implies ~P(k-j, 0), since

~P(i,0) =Ek:0<k <M : S # X
Moreover, because k-j = M-i, Q(i-M) & ~P(k-j, 0)@(i+1-M), establishing a non-match at position i-M+

Next we must show that the statement i := igydnever falsifies the invariant. This is the caseyvjled
that before the assignment Q(ifd-M) is guaranteed. Since we know that Q(i+1-M) Isolid suffices to
establish ~P(i+h-M) for h = 2, 3, ... ;). We now recall that dx is defined as the distavfahe rightmost
occurrence of x in the pattern from the end. Taifoimally expressed as

Ak: M-dy <k <M-1:p#X
Substituting sfor x, we obtain

Ah: M-Og.y <h <M-1:g; #py

Ah:1 <h<da:S17 Phm

Ah: 1 < h< dgjq 1 ~P(i+h-M)

The following program includes the presented, sifieol Boyer-Moore strategy in a setting similarthat
of the preceding KMP-search program. Note as aildbtt a repeat statement is used in the inngp,loo
incrementing k and j before comparing s and p. €himinates the -1 terms in the index expressions.

PROCEDURE Search(VAR s, p: ARRAY OF CHAR; m, n: INGER; VAR r: INTEGER);
(*search for pattern p of length m in text desfgth n*)
(*if p is found, then r indicates the positiong, otherwise r = -1*)
VAR |, J, k: INTEGER,;
d: ARRAY 128 OF INTEGER,;
BEGIN
FORi:=0TO 127 DO d[i] :=mEND ;
FOR j:=0 TO m-2 DO d[ORD(p[j])] := m-j-1 END
i=m;
REPEAT j:=m; k =i
REPEAT DEC(k); DEC())
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UNTIL (j < 0) OR (p[j]# s[K]);
i ;= i+ d[ORD(s[i-1])]
UNTIL (j <0) OR (i > n);
IFj<OTHENT :=kELSEr:=-1END
END Search

Analysis of Boyer-Moore SearchThe original publication of this algorithm [1-@pntains a detailed
analysis of its performance. The remarkable prgpisrtthat in all except especially construed cadses
requires substantially less than N comparison¢hénluckiest case, where the last character op#tern
always hits an unequal character of the text, threlver of comparisons is N/M.

The authors provide several ideas on possible durtimprovements. One is to combine the strategy
explained above, which provides greater shiftimpstwhen a mismatch is present, with the Knuth-orr
Pratt strategy, which allows larger shifts afteteddon of a (partial) match. This method requites
precomputed tables; d1 is the table used abovedarnsl the table corresponding to the one of thePKM
algorithm. The step taken is then the larger oftite both indicating that no smaller step couldgiloly
lead to a match. We refrain from further elaboxatine subject, because the additional complexitthef
table generation and the search itself does noh seeyield any appreciable efficiency gain. In fatte
additional overhead is larger, and casts some taiegr whether the sophisticated extension is an
improvement or a deterioration.

Exercises

1.1. Assume that the cardinalities of the standgrds INTEGER, REAL, and CHAR are denoted hy ¢
Ceay @Nd Gna» What are the cardinalities of the following daypes defined as exemples in this
chapter: sex, weekday, row, alfa, complex, datesque?

1.2. Which are the instruction sequences (on yompaiter) for the following:
(a) Fetch and store operations for an elementdégmarecords and arrays?
(b) Set operations, including the test for membipfsh

1.3. What are the reasons for defining certaindfedaita as sequences instead of arrays?

1.4. Given is a railway timetable listing the dadlgrvices on several lines of a railway systemdFn
representation of these data in terms of arragsrds, or sequences, which is suitable for lookiup o
arrival and departure times, given a certain stadiod desired direction of the train.

1.5. Given a text T in the form of a sequence &td df a small number of words in the form of taroays
A and B. Assume that words are short arrays ofagttars of a small and fixed maximum length. Write
a program that transforms the text T into a textySeplacing each occurrence of a wordb its
corresponding word;B

1.6. Compare the following three versions of theaby search with the one presented in the textckivof
the three programs are correct? Determine theaetarvariants. Which versions are more efficient?
We assume the following variables, and the condan0:

VAR, |, k, x: INTEGER;
a: ARRAY N OF INTEGER,;

Program A:
i:=0;j:=N-1;
REPEAT k := (i+j) DIV 2;
IF a[k] <x THEN i:=k ELSE j := k END
UNTIL (a[k] =x) OR (i>))
Program B:
i:=0;j:=N-1;
REPEAT k := (i+j) DIV 2;
IF x<alk] THEN j:=k-1 END ;
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IF a[k] < x THEN i := k+1 END
UNTILi>j

Program C:
i:=0;j:=N-1;
REPEAT k := (i+j) DIV 2;
IF x <alk] THEN j:=k ELSE i := k+1 END
UNTIL i > |

Hint: All programs must terminate with & X, if such an element exists, or & X, if there exists no
element with value x.

1.7. A company organizes a poll to determine tleesss of its products. Its products are recorddapes
of hits, and the most popular hits are to be brastdim a hit parade. The polled population is to be
divided into four categories according to sex agd ésay, less or equal to 20, and older than 20).
Every person is asked to name five hits. Hits deatified by the numbers 1 to N (say, N = 30). The
results of the poll are to be appropriately encoded sequence of characters. Hint: use procedures
Read and ReadInt to read the values of the poll.

TYPE hit = [N];
sex = (male, female);
reponse -RECORD name, firstname: alfa;
S: sex;
age: INTEGER;
choice: ARRAY 5 OF hit
END ;

VAR poll: Files.File
This file is the input to a program which computes following results:

1. Alist of hits in the order of their popularitigach entry consists of the hit number and the raurob
times it was mentioned in the poll. Hits that weever mentioned are omitted from the list.

2. Four separate lists with the names and firstasaof all respondents who had mentioned in firatel
one of the three hits most popular in their catggor

The five lists are to be preceded by suitablestitle
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2. SORTING

2.1. Introduction

The primary purpose of this chapter is to provideegtensive set of examples illustrating the usthefdata
structures introduced in the preceding chaptertanshow how the choice of structure for the undedy
data profoundly influences the algorithms that grenf a given task. Sorting is also a good exampkhtiw
that such a task may be performed according to ndifigrent algorithms, each one having certain
advantages and disadvantages that have to be weagenst each other in the light of the particular
application.

Sorting is generally understood to be the procéssasranging a given set of objects in a speaifier. The
purpose of sorting is to facilitate the later shafmr members of the sorted set. As such it is lamost
universally performed, fundamental activity. Obgeate sorted in telephone books, in income tas, file
tables of contents, in libraries, in dictionariesywarehouses, and almost everywhere that stordtsthave
to be searched and retrieved. Even small childrentaught to put their things "in order"”, and theeg
confronted with some sort of sorting long beforeyttearn anything about arithmetic.

Hence, sorting is a relevant and essential actipiyticularly in data processing. What else wdddeasier

to sort than data! Nevertheless, our primary istieie sorting is devoted to the even more fundaaient
techniques used in the construction of algorithffiisere are not many techniques that do not occur
somewhere in connection with sorting algorithmspémticular, sorting is an ideal subject to dematsta
great diversity of algorithms, all having the sapugpose, many of them being optimal in some sesrse,
most of them having advantages over others. hdsefore an ideal subject to demonstrate the niegeds
performance analysis of algorithms. The examplsoating is moreover well suited for showing howeayw
significant gain in performance may be obtainedthy development of sophisticated algorithms when
obvious methods are readily available.

The dependence of the choice of an algorithm orsthueture of the data to be processed -- an uiggi
phenomenon -- is so profound in the case of sottiag sorting methods are generally classified tto
categories, namely, sorting of arrays and sortihgsequential) files. The two classes are ofteredal
internal andexternal sortingoecause arrays are stored in the fast, high-spaediom-access "internal store
of computers and files are appropriate on the slpwet more spacious "external® stores based on
mechanically moving devices (disks and tapes). ifmgortance of this distinction is obvious from the
example of sorting numbered cards. Structuringctires as an array corresponds to laying them dudiinh

of the sorter so that each card is visible andviddelly accessible (see Fig. 2.1).

Structuring the cards as a file, however, implkest from each pile only the card on the top ishlési(see
Fig. 2.2). Such a restriction will evidently hawrieus consequences on the sorting method to lak bigeit
is unavoidable if the number of cards to be laitli®larger than the available table.

Before proceeding, we introduce some terminology/rastation to be used throughout this chapter.eliane
given n items

aOa a.! ey a-l
sorting consists of permuting these items intorazaya
&0y &y e s a[n-l]

such that, given an ordering function f,

f(ako) < f(ak) < ... <f(ayn-1y)

Ordinarily, the ordering function is not evaluatetording to a specified rule of computation budt@ed as
an explicit component (field) of each item. Itsualis called th&ey of the item. As a consequence, the
record structure is particularly well suited to megent items and might for example be declared|ss:

TYPE ltem = RECORD key: INTEGER,;
(*other components declared here*)
END
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The other components represent relevant data dbeltems in the collection; the key merely assuthes
purpose of identifying the items. As far as outisgralgorithms are concerned, however, the keéfyesonly
relevant component, and there is no need to defiryeparticular remaining components. In the follagvi
discussions, we shall therefore discard any associaformation and assume that the titeen be defined
as INTEGER. This choice of the key type is somewdrditrary. Evidently, any type on which a total
ordering relation is defined could be used jusial.

A sorting method is calledtableif the relative order if items with equal keys @ins unchanged by the
sorting process. Stability of sorting is often dasle, if items are already ordered (sorted) adogrtb some
secondary keys, i.e., properties not reflectechby(primary) key itself.

This chapter is not to be regarded as a compralessrvey in sorting techniques. Rather, some tszlec
specific methods are exemplified in greater deEal. a thorough treatment of sorting, the intecbséader
is referred to the excellent and comprehensive emaiipm by D. E. Knuth [2-7] (see also Lorin [2-10])

2.2. Sorting Arrays

The predominant requirement that has to be madsofding methods on arrays is an economical usbeof
available store. This implies that the permutatadnitems which brings the items into order has @ b
performed in situ, and that methods which transpems from an array a to a result array b arénisically

of minor interest. Having thus restricted our ckoadf methods among the many possible solutionéy t
criterion of economy of storage, we proceed torst filassification according to their efficiencye.j their
economy of time. A good measure of efficiency igagbed by counting the numbers C of needed key
comparisons and M of moves (transpositions) of stefthese numbers are functions of the number n of
items to be sorted. Whereas good sorting algoritregsire in the order of n*log(n) comparisons, wetf
discuss several simple and obvious sorting teckesiqoalledstraight methodsall of which require in the
order ¥ comparisons of keys. There are three good reafamgresenting straight methods before
proceeding to the faster algorithms.

1. Straight methods are particularly well suited @ucidating the characteristics of the major isgrt
principles.

2. Their programs are easy to understand and are 8emember that programs occupy storage as well!

3. Although sophisticated methods require feweratpms, these operations are usually more comiplex
their details; consequently, straight methods astef for sufficiently small n, although they most be
used for large n.

Sorting methods that sort items in situ can besdiag into three principal categories accordingtheir
underlying method:

Sorting by insertion

Sorting by selection

Sorting by exchange
These three pinciples will now be examined and aregh The procedures operate on a global varable
whose components are to be sorted in situ, i.ehowtt requiring additional, temporary storage. The
components are the keys themselves. We discard d#tta represented by the record tyfmen, thereby
simplifying matters. In all algorithms to be deveddl in this chapter, we will assume the presencanof
arraya and a constamt, the number of elements af

TYPE Item = INTEGER,;
VAR a: ARRAY n OF Item

2.2.1. Sorting by Straight I nsertion

This method is widely used by card players. Thm#dcards) are conceptually divided into a destinat
sequence;a.. ¢; and a source sequencge.aa. In each step, starting with i = 2 and incremeniirby
unity, the i th element of the source sequenceidked and transferred into the destination sequdryce
inserting it at the appropriate place.



Initial Keys: 44 55 12 42 94 18 06 67

44 55 12 42 94 18 06 67
12 44 55 42 94 18 06 67
12 42 44 55 94 18 06 67
12 42 44 55 94 18 06 67
12 18 42 44 55 94 06 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

Table 2.1 A Sample Process of Straight Insertioniig).

The process of sorting by insertion is shown inreaample of eight numbers chosen at random (seeTabl
2.1). The algorithm of straight insertion is

FORi:=1TOn-1DO

x = a[i;

insert x at the appropriate place n.aa
END

In the process of actually finding the appropriatee, it is convenient to alternate between coispas and
moves, i.e., to let x sift down by comparing x witie next item jaand either inserting x or movingta the
right and proceeding to the left. We note thatdheme two distinct conditions that may cause thmitetion
of the sifting down process:

T T TTTT
~NOoO O WDN PP

1. An item ais found with a key less than the key of x.
2. The left end of the destination sequence ishehc

PROCEDURE Straightinsertion;
VAR |, j: INTEGER; x: Iltem;

BEGIN
FORi:=1TOn-1 DO
x=afl;j=i
WHILE (j > 0) & (x < a[j-1] DO a[j] := a[]-1]DEC(j) END ;
afj] :=x
END

END Straightinsertion

Analysis of straight insertiorhe number Cof key comparisons in the i-th sift is at most ial least 1, and
-- assuming that all permutations of the n keyseapaally probable -- i/2 in the average. The nuniieof
moves (assignments of items) is#C2 (including the sentinel). Therefore, the tetambers of comparisons
and moves are

Crmin=n-1 Mhin = 3*(n-1)
Cae= (I’ +n - 2)/4 Mye= (I + 9n - 10)/4
Crax= (n2 +n-4)/4 Mhax = (r? +3n-4)/2

The minimal numbers occur if the items are inijiall order; the worst case occurs if the itemsiaitelly
in reverse order. In this sense, sorting by inseréixhibits a truly natural behavior. It is plairat the given
algorithm also describes a stable sorting prodelesaves the order of items with equal keys ungleain

The algorithm of straight insertion is easily imped by noting that the destination sequengce.aa, in
which the new item has to be inserted, is alreadigred. Therefore, a faster method of determinimgy t
insertion point can be used. The obvious choi@e liénary search that samples the destination sequen
the middle and continues bisecting until the insarpoint is found. The modified sorting algorithisncalled
binary insertion

PROCEDURE Binarylnsertion(VAR a: ARRAY OF Item;INTEGER);
VAR, j, m, L, R: INTEGER; x: Item;

BEGIN
FORi:=1TOn-1DO
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x=al;L:=1;R:=1i
WHILE L<R DO
m = (L+R) DIV 2;
IF am] <= x THEN L := m+1 ELSE R := m END
END ;
FOR | :=i1TO R+1 BY -1 DO aJj] := a[j-1] END
a[R] :=x
END
END Binarylnsertion

Analysis of binary insertianThe insertion position is found if L = R. Thubgtsearch interval must in the
end be of length 1; and this involves halving thiterival of length i log(i) times. Thus,

C = S:0<I<n:llog(]
We approximate this sum by the integral

Int (0:n-1) log(x) dx = n*(logn-c)+c
wherec=loge=1/n2 =1.44269... .

The number of comparisons is essentially indepenafetie initial order of the items. However, besawf

the truncating character of the division involved hisecting the search interval, the true number of
comparisons needed with i items may be up to l1dniglan expected. The nature of this bias is shah t
insertion positions at the low end are on the ayetacated slightly faster than those at the high éhereby
favoring those cases in which the items are orifyirfaghly out of order. In fact, the minimum nurnmbef
comparisons is needed if the items are initiallyeinerse order and the maximum if they are alréadyder.
Hence, this is a case of unnatural behavior of rtingpalgorithm. The number of comparisons is then

approximately
C = n*(log n - log et 0.5)

Unfortunately, the improvement obtained by usinggirmary search method applies only to the number of
comparisons but not to the number of necessary sndwdact, since moving items, i.e., keys and eissed
information, is in general considerably more tino@guming than comparing two keys, the improvemgnt i
by no means drastic: the important term M is sfilthe order A And, in fact, sorting the already sorted
array takes more time than does straight insewtitin sequential search.

This example demonstrates that an "obvious imprewttroften has much less drastic consequences than
one is first inclined to estimate and that in sarases (that do occur) the "improvement" may actuath

out to be a deterioration. After all, sorting bgéntion does not appear to be a very suitable rdeftvo
digital computers: insertion of an item with thdsequent shifting of an entire row of items by gk
position is uneconomical. One should expect betgults from a method in which moves of items arky o
performed upon single items and over longer digsnchis idea leads to sorting by selection.

222 Sorting by Straight Selection
This method is based on the following principle:

1. Select the item with the least key.

2. Exchange it with the first item.a
3. Then repeat these operations with the remaimihdtems, then with n-2 items, until only one item

- the largest -- is left.
This method is shown on the same eight keys asliel2.1.
Initial keys 44 55 12 42 94 18 06 67

06 55 12 42 94 18 44 67
06 12 55 42 94 18 44 67
06 12 18 42 94 55 44 67
06 12 18 42 94 55 44 67
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06 12 18 42 44 55 94 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

Table 2.2 A Sample Process of Straight Selectamntirty).
The algorithm is formulated as follows:

FORi:=0TOn-1 DO
assign the index of the least item of 28,1 to k;
exchange;avith g

END

This method, calledtraight selectionis in some sense the opposite of straight imserbtraight insertion
considers in each step only the one next iteme&turce sequence and all items of the destinatiay to
find the insertion point; straight selection comsg&lall items of the source array to find the oith the least
key and to be deposited as the one next item alekénation sequence..

PROCEDURE StraightSelection;
VAR |, |, ki INTEGER; x: Item;

BEGIN
FORi:=0TO n-2 DO
k:=i; x = ai];

FOR|:=i+1 TO n-1 DO
IF a[j] < x THEN k :=j; x := a[k] END
END ;
alk] := al[i]; ali] :=x
END
END StraightSelection

Analysis of straight selectiokvidently, the number C of key comparisons is petelent of the initial order
of keys. In this sense, this method may be sditktmave less naturally than straight insertion. WWaia

C=(rf-n)2

The number M of moves is at least
Mumin = 3*(n-1)

in the case of initially ordered keys and at most
Mpmax= /4 + 3*(n-1)

if initially the keys are in reverse order. In orde determine Mavg we make the following delibienas:
The algorithm scans the array, comparing each elewi¢h the minimal value so far detected andnigfier
than that minimum, performs an assignment. Thegiyitiby that the second element is less than thse, fis
1/2; this is also the probability for a new assigninto the minimum. The chance for the third elenere
less than the first two is 1/3, and the chancéeffourth to be the smallest is 1/4, and so onré&fboee the
total expected number of moves igHwhere H is the n th harmonic number

Hy=1+12+1/3+..+1/n
H, can be expressed as
H, = In(n) + g + 1/2n - 1/12n+ ...

where g = 0.577216... is Euler's constant. Forigefitly large n, we may ignore the fractional terand
therefore approximate the average number of asgigtain the i th pass as

Fi=In(+g+1
The average number of moves Mn a selection sort is then the sum pWith i ranging from 1 to n.

Mayg = n*(g+1) + Si: 1 <i<n:In(i))
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By further approximating the sum of discrete tebmshe integral
Integral (1:n) In(x)dx = n*In(n)-n+1

we obtain an approximate value
May = n*(In(n) + g)

We may conclude that in general the algorithm dight selection is to be preferred over straigbeition,
although in the cases in which keys are initiatiyted or almost sorted, straight insertion is stiinewhat
faster.

223 Sorting by Straight Exchange

The classification of a sorting method is seldortirely clear-cut. Both previously discussed methods
also be viewed as exchange sorts. In this sediionwever, we present a method in which the exchaifige
two items is the dominant characteristic of thecpss. The subsequent algorithm of straight exchgnigi
based on the principle of comparing and exchangais of adjacent items until all items are sorted.

As in the previous methods of straight selectioa,make repeated passes over the array, each fing si
the least item of the remaining set to the left ehthe array. If, for a change, we view the arr@aye in a
vertical instead of a horizontal position, and #hwhe help of some imagination -- the items alstides in a
water tank with weights according to their keysrtleach pass over the array results in the asceosia
bubble to its appropriate level of weight (see €&hB). This method is widely known as Bugbblesort

=1 2 3 4 5 6 7 8

44 06 06 06 06 06 06 06
55 44 12 12 12 12 12 12
12 55 44 18 18 18 18 18
42 12 55 44 42 42 42 42
94 42 18 55 44 44 44 44
18 94 42 42 55 55 55 55
06 18 94 67 67 67 67 67
67 67 67 94 94 94 94 94

Table 2.3 A Sample of Bubblesorting.

PROCEDURE BubbleSort;
VAR |, j: INTEGER; x: Item;
BEGIN
FORi:=1TO n-1DO
FORj:=n-1TOiBY -1DO
IF afj-1] > a[j] THEN
x 1= alj-1]; afi-1] := a[j]; afi] := x
END
END
END
END BubbleSort

This algorithm easily lends itself to some improeaits. The example in Table 2.3 shows that thetthase
passes have no effect on the order of the itemauisecthe items are already sorted. An obvious igcén
for improving this algorithm is to remember whetloemot any exchange had taken place during a pass.
last pass without further exchange operationsdsetore necessary to determine that the algorittay loe
terminated. However, this improvement may itseliproved by remembering not merely the fact timat a
exchange took place, but rather the position (indéthe last exchange. For example, it is plaat Hil pairs
of adjacent items below this index k are in therrgesorder. Subsequent scans may therefore benateci
at this index instead of having to proceed to tregletermined lower limit i. The careful programmetices,
however, a peculiar asymmetry: A single misplabalble in the heavy end of an otherwise sorteayarr
will sift into order in a single pass, but a migmed item in the light end will sink towards its @st position
only one step in each pass. For example, the array
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12 18 42 44 55 67 94 06
is sorted by the improved Bubblesort in a singlesphut the array
94 06 12 18 42 44 55 67

requires seven passes for sorting. This unnatgsahmetry suggests a third improvement: alternattireg
direction of consecutive passes. We appropriatellytbe resulting algorithnShakersott Its behavior is
illustrated in Table 2.4 by applying it to the saeight keys that were used in Table 2.3.

PROCEDURE ShakerSort;
VAR |, k, L, R: INTEGER; x: Iltem;
BEGINL:=1;R:=n-1;k = R;
REPEAT
FORj:=RTOLBY -1DO
IF afj-1] > a[j] THEN
x = afj-1]; afj-1] := a[j]; afj] := xk :=j
END
END ;
L = k+1;
FORj:=LTORBY +1 DO
IF afj-1] > a[j] THEN
x 1= afj-1]; afj-1] := afj]; alj] := xk := ]

END
END ;
R =k-1
UNTILL>R
END ShakerSort

L= 2 3 3 4 4
R= 8 8 7 7 4
dir= 1 ) 1 ) 1

44 06 06 06 06
55 44 44 12 12
12 55 12 44 18
42 12 42 18 42
94 42 55 42 44
18 94 18 55 55
06 18 67 67 67
67 67 94 94 94

Table 2.4 An Example of Shakersort.
Analysis of Bubblesort and Shakersditte number of comparisons in the straight exchahg@rithm is

C = (f-n)2
and the minimum, average, and maximum numbers gémassignments of items) are
Mumin = O, Muyg = 3*(1° - n)/2, Mnax = 3*(n* - n)/4

The analysis of the improved methods, particulahigt of Shakersort, is intricate. The least numiser
comparisons is &, = n-1. For the improved Bubblesort, Knuth arrivesan average number of passes
proportional to n - ¥n*|, and an average number of comparisons proportiorfe? — n*(k, + In(n)))/2. But

we note that all improvements mentioned above dooirway affect the number of exchanges; they only
reduce the number of redundant double checks. Wmfately, an exchange of two items is generallyoaem
costly operation than a comparison of keys; oavei improvements therefore have a much less pndfou
effect than one would intuitively expect.

This analysis shows that the exchange sort andiitsr improvements are inferior to both the ingertand
the selection sorts; and in fact, the Bubblesostheadly anything to recommend it except its catcame.



The Shakersort algorithm is used with advantagth@se cases in which it is known that the items are
already almost in order -- a rare case in practice.

It can be shown that the average distance that efttte n items has to travel during a sort is pl&es.
This figure provides a clue in the search for inady i.e. more effective sorting methods. All gtdi
sorting methods essentially move each item by arsitipn in each elementary step. Therefore, they ar
bound to require in the ordef Buch steps. Any improvement must be based onrtheigle of moving
items over greater distances in single leaps.

Subsequently, three improved methods will be diseds namely, one for each basic sorting method:
insertion, selection, and exchange.

2.3. Advanced Sorting M ethods

2.3.1 Insertion Sort by Diminishing I ncrement

A refinement of the straight insertion sort wasgmsed by D. L. Shell in 1959. The method is ex@diand
demonstrated on our standard example of eight i{se®s Table 2.5). First, all items that are fousifians
apart are grouped and sorted separately. This ggasecalled a 4-sort. In this example of eighthieeach
group contains exactly two items. After this fipsiss, the items are regrouped into groups withsitemo
positions apart and then sorted anew. This prosesalled a 2-sort. Finally, in a third pass, &nis are
sorted in an ordinary sort or 1-sort.

One may at first wonder if the necessity of seveoaling passes, each of which involves all itetiogs not
introduce more work than it saves. However, eactingpstep over a chain either involves relatividw

items or the items are already quite well orderedi @mparatively few rearrangements are required.

It is obvious that the method results in an ordengdy, and it is fairly obvious that each pasditsrdrom

previous passes (since each i-sort combines twgpgrsorted in the preceding 2i-sort). It is alsviobs that
any sequence of increments is acceptable, as Btigedast one is unity, because in the worst teséast
pass does all the work. It is, however, much lésgans that the method of diminishing incrementslds
even better results with increments other than pepoE2.

44 55 12 42 94 18 06 67
4-sort yields 44 18 06 42 94 55 12 67
2-sort yield 06 18 12 42 44 55 94 67
1-sort yields 06 12 18 42 44 55 67 94

Table 2.5 An Insertion Sort with Diminishing Inanents.

The procedure is therefore developed without rglyon a specific sequence of increments. The T
increments are denoted by hy, ..., k.1 with the conditions

ha=1, ha<h
The algorithm is described by the procedBhellsor2.11] for t = 4:

PROCEDURE ShellSort;

CONST T =4;
VAR, |, k, m, s: INTEGER;
X: ltem;

h: ARRAY T OF INTEGER,;
BEGIN h[0] :=9; h[1] :=5; h[2] := 3; h[3] := 1;
FORmM:=0TO T-1 DO

k :=h[m];

FORi:=k+1TO n-1 DO
x:=ai]; j = i-k;
WHILE (j >= k) & (x < a[j]) DO a[j+k] := §]; ] ;== j-k END ;
a[j+k] :=x

END
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END
END ShellSort

Analysis of ShellsarfThe analysis of this algorithm poses some veificdit mathematical problems, many
of which have not yet been solved. In particulais inot known which choice of increments yields thest
results. One surprising fact, however, is that thieyuld not be multiples of each other. This wilbid the
phenomenon evident from the example given abowshich each sorting pass combines two chains that
before had no interaction whatsoever. It is inddesirable that interaction between various chahkes
place as often as possible, and the following #moholds: If a k-sorted sequence is i-sorted, fthen
remains k-sorted. Knuth [2.8] indicates evidencat th reasonable choice of increments is the sequenc
(written in reverse order)

1,4,13,40,121, ...
where h.; = 3h.y, =1, and t = kxlog(n) - 1. He also recommends the sequence
1,3,7,15,31, ..

where k., = 2hey, by = 1, and t = kxlog(n) - 1. For the latter choice, mathematical arialygelds an effort
proportional to A required for sorting n items with the Shellsogalthm. Although this is a significant
improvement overfwe will not expound further on this method, siesen better algorithms are known.

2.3.2 TreeSort

The method of sorting by straight selection is Hase the repeated selection of the least key amdtems,
then among the remaining n-1 items, etc. Cleaihdifig the least key among n items requires n-1
comparisons, finding it among n-1 items needs wR@arisons, etc., and the sum of the first n-1giete is
(n*n)/2. So how can this selection sort possiblyrproved? It can be improved only by retaining from
each scan more information than just the identificaof the single least item. For instance, witl2 n
comparisons it is possible to determine the smabgrof each pair of items, with another n/4 coriguars
the smaller of each pair of such smaller keys aasdbected, and so on. With only n-1 comparisoescan
construct a selection tree as shown in Fig. 2.8.identify the root as the desired least key [2.2].

12/ ’ \06
44/ \12 18/ \06
NN N N

Fig. 2.3. Repeated selection among two keys

The second step now consists of descending dovmg éfee path marked by the least key and eliminating
by successively replacing it by either an emptyelailthe bottom, or by the item at the alternabirench at
intermediate nodes (see Figs. 2.4 and 2.5). Adaejtem emerging at the root of the tree has tiwsv(
second) smallest key and can be eliminated. Afiaralm selection steps, the tree is empty (i.d.pflHoles),
and the sorting process is terminated. It shoulddied that each of the n selection steps reqgairgslog n
comparisons. Therefore, the total selection procesgsiires only on the order of n*log n elementary
operations in addition to the n steps required hey ¢onstruction of the tree. This is a very sigaifit
improvement over the straight methods requirifigteps, and even over Shellsort that requitéssteps.
Naturally, the task of bookkeeping has become netaborate, and therefore the complexity of indiaidu
steps is greater in the tree sort method; aftematirder to retain the increased amount of infatiam gained
from the initial pass, some sort of tree structbas to be created. Our next task is to find mettafds
organizing this information efficiently.
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44/ ) \12 18/ ) \67
44/ \55 12/ \42 94/ \18 { \67

Fig. 2.5. Refilling the holes

Of course, it would seem particularly desirableliminate the need for the holes that in the eruufate the
entire tree and are the source of many unnecessanparisons. Moreover, a way should be found to
represent the tree of n items in n units of storagdead of in 2n - 1 units as shown above. Thesds are
indeed achieved by a method calledapsortby its inventor J. Williams [2-14]; it is plaindhthis method
represents a drastic improvement over more cororgititree sorting approaches.h&apis defined as a
sequence of keys hh.,q, ..., ik (L>0) such that

h <hyg and h<hy, fori=L...R/2-1

If a binary tree is represented as an array assliowig. 2.6, then it follows that the sort tréed=igs. 2.7
and 2.8 are heaps, and in particular that the elelg®f a heap is its least element:

ho = min(h, hy, ... , h.y)
hl/hO\hz
N N O D

th

S

h; hg h12

Fig. 2.6. Array viewed as a binary tree
/ "
42 \ \06 \
55/ 94 18/ 12

Fig. 2.7. Heap with 7 elements
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42/®\12
T I

Fig. 2.8. Key 44 sifting through the heap

Let us now assume that a heap with elements.h ks is given for some values L and R, and that a new
element x has to be added to form the extended heaphk.;. Take, for example, the initial heap h h
shown in Fig. 2.7 and extend the heap to the Igfam element = 44. A new heap is obtained by first
putting x on top of the tree structure and thenldtting it sift down along the path of the smaller
comparands, which at the same time move up. ligitren example the value 44 is first exchanged @éh
then with 12, and thus forming the tree shown ig. &4.8. We now formulate this sifting algorithm as
follows: i, j are the pair of indices denoting tiblems to be exchanged during each sift step. Tadereis
urged to convince himself that the proposed mettioslifting actually preserves the heap invariahtst t
define a heap.

A neat way to construct a heap in situ was sugddsgeR. W. Floyd. It uses the sifting procedurevghadn
Program 2.7. Given is an array h h.s; clearly, the elements;h... h.1 (with m = n DIV 2) form a heap
already, since no two indices i, j are such that3i+1 or j = 2i+2. These elements form what may be
considered as the bottom row of the associatedrypitrae (see Fig. 2.6) among which no ordering
relationship is required. The heap is now extertddte left, whereby in each step a new elemeintisded
and properly positioned by a sift. This proces#lustrated in Table 2.6 and yields the heap shawhRig.
2.6.

PROCEDURE sift(L, R: INTEGER);
VAR |, j: INTEGER; x: Item;

BEGIN i:=L;j:=2*+1; x := a]i];
IF (j<R) & (afj+1] < a[j]) THEN j := j+1 END ;
WHILE (j <= R) & (a[j] < x) DO

ali] = afi]; i:=j;j=2%;
IF (j < R) & (a[j+1] < a[j]) THEN j := j+1 EMD
END ;
afi] == x
END sift

44 55 12 42 | 94 18 06 67
44 55 12 | 42 94 18 06 67
44 55 | 06 42 94 18 12 67
44 | 42 06 55 94 18 12 67
06 42 12 55 94 18 44 67

Table 2.6 Constructing a Heap.
Consequently, the process of generating a heagleinents ... h,.; in situis described as follows:

L:=nDIV 2;
WHILE L >0 DO DEC(L); sift(L, n-1) END

In order to obtain not only a partial, but a fufdering among the elements, n sift steps have ltowfp
whereby after each step the next (least) item neapitked off the top of the heap. Once more, thestijon
arises about where to store the emerging top elisnaerd whether or not an situ sort would be possible.
Of course there is such a solution: In each stiep tlae last component (say x) off the heap, stoeetap
element of the heap in the now free location adng let x sift down into its proper position. Thecessary
n-1 steps are illustrated on the heap of TableTheé.process is described with the aid of the phoessift
as follows:
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R :=n-1;

WHILE R >0 DO
x := a[0]; a[0] := a[R]; a[R] := x;
DEC(R); sift(1, R)

END

06 42 12 55 94 18 44 67
12 42 18 55 94 67 44 | 06
18 42 44 55 94 67 | 12 06
42 55 44 67 94 | 18 12 06
44 55 94 67 | 42 18 12 06
55 67 94 | 44 42 18 12 06
67 94 | 55 44 42 18 12 06
94 | 67 55 44 42 18 12 06

Table 2.7 Example of a Heapsort Process.

The example of Table 2.7 shows that the resultirtigrois actually inverted. This, however, can gak#é
remedied by changing the direction of the ordenigations in the sift procedure. This results ie th
following proceduréHeapsort Note thasift should actually be declared locaHeapsor}.

PROCEDURE sift(L, R: INTEGER);
VAR |, j: INTEGER; x: Item;

BEGIN i:=L;j:=2*+1; x := a[i];
IF (<R) & (a]j] <a[j+1]) THEN j :=j+1 END ;
WHILE (j <= R) & (x < &[j]) DO

ali] := afj]; i :=j; j = 2*j+1;
IF (j<R) & (alj] <a[j+1]) THEN j = j+1 END
END ;
afi] == x
END sift;

PROCEDURE HeapSort;
VAR L, R: INTEGER; x: Item;
BEGIN L:=nDIV 2; R :=n-1;
WHILE L > 0 DO DEC(L); sift(L, R) END ;
WHILE R >0 DO
x = a[0]; a[0] := a[R]; a[R] := Xx;
DEC(R); sift(L, R)
END
END HeapSort

Analysis of Heapsorit first sight it is not evident that this methofisorting provides good results. After
all, the large items are first sifted to the leéifdre finally being deposited at the far right. éed, the
procedure is not recommended for small numberseofis, such as shown in the example. However, for
large n, Heapsort is very efficient, and the lamye, the better it becomes -- even compared &blsiint.

In the worst case, there are n/2 sift steps negssfting items through log(n/2), log(n/2 +1), ,.log(n-1)
positions, where the logarithm (to the base 2juisdated to the next lower integer. Subsequefhtéysorting
phase takes n-1 sifts, with at most log(n-1), le@)n... , 1 moves. In addition, there are n-1 nsofa
stashing the sifted item away at the right. Thguarent shows that Heapsort takes of the order loigr)
steps even in the worst possible case. This extellerst-case performance is one of the strongesitops
of Heapsort.

It is not at all clear in which case the worst {be best) performance can be expected. But geyerall
Heapsort seems to like initial sequences in wHighitems are more or less sorted in the inverserpeshd
therefore it displays an unnatural behavior. Thaphereation phase requires zero moves if the ipvender

is present. The average number of moves is appabaiynn/2 x log(n), and the deviations from thisuea
are relatively small.
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2.3.3 Partition Sort

After having discussed two advanced sorting mett@ded on the principles of insertion and selection
introduce a third improved method based on thecji@ of exchange. In view of the fact that Bubbhes
was on the average the least effective of the tistesight sorting algorithms, a relatively signéfit
improvement factor should be expected. Still, imes as a surprise that the improvement based on
exchanges to be discussed subsequently yields ekt dorting method on arrays known so far. Its
performance is so spectacular that its inventok,&..Hoare, called iQuicksort[2.5 and 2.6].

Quicksort is based on the recognition that exchasgeuld preferably be performed over large digamit
order to be most effective. Assume that n itemsgaren in reverse order of their keys. It is poksib sort
them by performing only n/2 exchanges, first takiing leftmost and the rightmost and gradually peeging
inward from both sides. Naturally, this is possibldy if we know that their order is exactly inverd8ut
something might still be learned from this example.

Let us try the following algorithm: Pick any itesh random (and call it x); scan the array fromléfeuntil

an item a> x is found and then scan from the right untiitam a < x is found. Now exchange the two items
and continue this scan and swap process untivtbestans meet somewhere in the middle of the afiag.
result is that the array is now partitioned inttefa part with keys less than (or equal to) x, andght part
with keys greater than (or equal to) x. This piaring process is now formulated in the form ofragedure.
Note that the relations > and < have been replagedand< , whose negations in the while clause are < and
>, With this change x acts as a sentinel for bo#ns.

PROCEDURE partition;
VAR i, j: INTEGER; w, x: Item;
BEGIN i:=0;j:=n-1;
select an item x at random;
REPEAT
WHILE afi]j <xDOi:=i+1 END;
WHILE x < a[j] DO j:=j-1 END ;
IFi<=jTHEN
w = a[i]; afi] = a[j]; afi] :=w; i:=#1;j:=j-1
END
UNTIL i >j
END partition

As an example, if the middle key 42 is selectedaasparand x, then the array of keys
44 55 12 42 94 06 18 67

requires the two exchanges 4844 and 6— 55 to yield the partitioned array
18 06 12 42 94 55 44 67

and the final index values i =5 and j = 3. Keys.aa; are less or equal to key x = 42, and keys.a & are
greater or equal to key x. Consequently, ther¢taee parts, namely

Ak:1<k<i:a<x
Ak:isk<ja?x
Ak:j<k<n:x<g

The goal is to increase | and decrease j, so tmatniddle part vanishes. This algorithm is very
straightforward and efficient because the essectiahparands i, j, and x can be kept in fast registe

throughout the scan. However, it can also be cusdoee, as withessed by the case with n identicad,key
which result in n/2 exchanges. These unnecessatyaages might easily be eliminated by changing the
scanning statements to

WHILE a[i] <=x DO i:=i+1 END;

WHILE x <= a[j] DO j :=j-1 END
In this case, however, the choice element x, widgbresent as a member of the array, no longeraacts
sentinel for the two scans. The array with all itz keys would cause the scans to go beyond dleds
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of the array unless more complicated terminatiomditions were used. The simplicity of the conditiaa
well worth the extra exchanges that occur relagivakrely in the average random case. A slight gavin
however, may be achieved by changing the clausieadlimg the exchange step to i < j instead efji But
this change must not be extended over the twonsestts

INC(i); DEC())

which therefore require a separate conditionalsgaConfidence in the correctness of the partiigorithm
can be gained by verifying that the ordering relaiare invariants of the repeat statement. Ihitialith i =
1 and j = n, they are trivially true, and upon exith i > j, they imply the desired result.

We now recall that our goal is not only to find titawns of the original array of items, but alsogort it.
However, it is only a small step from partitionita sorting: after partitioning the array, apply thame
process to both partitions, then to the partitiohthe partitions, and so on, until every partitmmnsists of a
single item only. This recipe is described as foio (Note thatsort should actually be declared local to
Quickson.

PROCEDURE sort(L, R: INTEGER);
VAR i, j: INTEGER; w, x: Item;
BEGINi:=L;j:=R;
x = a[(L+R) DIV 2];
REPEAT
WHILE a[i] < x DO INC(i) END ;
WHILE x < a[j] DO DEC(j) END ;
IFi<=jTHEN
w = a[i]; afi] = a[j]; afi] :=w; i:=#1;j:=j-1
END
UNTIL i > j;
IF L <jTHEN sort(L, j) END ;
IF i <R THEN sort(i, R) END
END sort;

PROCEDURE QuickSort;
BEGIN sort(0, n-1)
END QuickSort

Proceduresort activates itself recursively. Such use of recursioalgorithms is a very powerful tool and
will be discussed further in Chap. 3. In some paogning languages of older provenience, recursion is
disallowed for certain technical reasons. We wilwnshow how this same algorithm can be expressed as
non-recursive procedure. Obviously, the solutiotoigxpress recursion as an iteration, wherebyrtaioe
amount of additional bookkeeping operations becnauessary.

The key to an iterative solution lies in maintagia list of partitioning requests that have yetb®
performed. After each step, two partitioning tagkise. Only one of them can be attacked directlyhwsy
subsequent iteration; the other one is stacked awathat list. It is, of course, essential that lise of

requests is obeyed in a specific sequence, narnnmehgverse sequence. This implies that the firquest
listed is the last one to be obeyed, and vice yehsalist is treated as a pulsating stack. Inftilewing

nonrecursive version of Quicksort, each requestpsesented simply by a left and a right index Bpieg

the bounds of the partition to be further partiidnThus, we introduce two array variables lowhhigsed
as stacks with index s. The appropriate choicédnefstack size M will be discussed during the aislgé
Quicksort.

PROCEDURE NonRecursiveQuickSort;
CONST M =12;
VAR, |, L, R, s: INTEGER; x, w: Item;
low, high: ARRAY M OF INTEGER; (*index statk
BEGIN s := 0; low[0] := 0; high[0] := n-1;
REPEAT (*take top request from stack*)
L := low[s]; R := high[s]; DEC(s);
REPEAT (*partition a[L] ... a[R]*)



i:=L;j:=R; x:=a[(L+R) DIV 2];
REPEAT
WHILE a[i] < x DO INC(i) END ;
WHILE x < a[j] DO DEC(j) END ;
IFi<=jTHEN
w = afi]; afi] == afj]; afj] = wj =i+1;j:=j1
END
UNTILi > j;
IFi<RTHEN (*stack request to sortirigpartition*)
INC(s); low[s] :=i; high[s] := R
END ;
R :=j (*now L and R delimit the left piion*)
UNTILL>=R
UNTILs=0
END NonRecursiveQuickSort

Analysis of Quicksorin order to analyze the performance of Quicksee,need to investigate the behavior
of the partitioning process first. After havingesgtbd a bound X, it sweeps the entire array. Hexxagtly n
comparisons are performed. The number of exchangesbe determind by the following probabilistic
argument.

With a fixed bound x, the expected number of exgeasperations is equal to the number of elemerifsein

left part of the patrtition, namely x-1, multiplidxy the probability that such an element reacheglése by

an exchange. An exchange had taken place if tmeeslehad previously been part of the right partititne
probablity for this is (n-(x-1))/n. The expectednmuer of exchanges is therefore the average of these
expected values over all possible bounds x.

M = [Sx:1<x<n: (X-1)*(n-(x-1))/n]/n =
[Su: 0< u<n-1: u*(n-u))/rf

= n*(n-1)/2nu - (2h- 3n + 1)/6n

= (n-1/n)/6

Assuming that we are very lucky and always happesefect the median as the bound, then each pairtigj
process splits the array in two halves, and thelbmurof necessary passes to sort is log n. Thetiregtbtal
number of comparisons is then n*log n, and thd tatenber of exchanges is n * log(n)/6.

Of course, one cannot expect to hit the medianhalltime. In fact, the chance of doing so is onfy. 1
Surprisingly, however, the average performance witkgort is inferior to the optimal case by a faabd
only 2*In(2), if the bound is chosen at random.

But Quicksort does have its pitfalls. First of @lperforms moderately well for small values ofas, do all
advanced methods. Its advantage over the othemaegamethods lies in the ease with which a straight
sorting method can be incorporated to handle sputfiitions. This is particularly advantageous when
considering the recursive version of the program.

Still, there remains the question of the worst casew does Quicksort perform then? The answer is
unfortunately disappointing and it unveils the ereakness of Quicksort. Consider, for instanceptiiacky
case in which each time the largest value of atjperthappens to be picked as comparand x. Them sap
splits a segment of n items into a left partitioithw-1 items and a right partition with a singlereent. The
r%sult is that n (instead of log n) splits becoraeassary, and that the worst-case performancele afrder

n-.

Apparently, the crucial step is the selection ef tomparand x. In our example program it is ch@sethe
middle element. Note that one might almost as salict either the first or the last element. Irs¢heases,
the worst case is the initially sorted array;, Qaak then shows a definite dislike for the triviiab and a
preference for disordered arrays. In choosing tidell® element, the strange characteristic of Quidkis

less obvious because the initially sorted arrayobwrs the optimal case. In fact, also the average
performance is slightly better, if the middle elemis selected. Hoare suggests that the choicebefmade

at random, or by selecting it as the median of allssample of, say, three keys [2.12 and 2.13]hSaic
judicious choice hardly influences the average grerénce of Quicksort, but it improves the worstecas
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performance considerably. It becomes evident thetingy on the basis of Quicksort is somewhat like a
gamble in which one should be aware of how muchroag afford to lose if bad luck were to strike.

There is one important lesson to be learned frametkperience; it concerns the programmer diregtigat

are the consequences of the worst case behavidiomes above to the performance Quicksort? We have
realized that each split results in a right pantitof only a single element; the request to sast flartition is
stacked for later execution. Consequently, the mari number of requests, and therefore the totaiimed
stack size, is n. This is, of course, totally ureptable. (Note that we fare no better -- in fagreworse --
with the recursive version because a system allpwecursive activation of procedures will havettres the
values of local variables and parameters of alkgdare activations automatically, and it will useiraplicit
stack for this purpose.)

The remedy lies in stacking the sort request ferdimger partition and in continuing directly withe further
partitioning of the smaller section. In this cabe, size of the stack M can be limited to log n.

The change necessary is localized in the sectitingeip new requests. It now reads

IFj-L<R-iTHEN
IFi <R THEN (*stack request for sorting righrtition*)
INC(s); low[s] :=i; high[s] := R
END ;
R :=] (*continue sorting left partition*)
ELSE
IF L <jTHEN (*stack request for sorting lefagtion*)
INC(s); low[s] := L; high[s] :=
END;
L :=i (*continue sorting right partition*)
END

2.34. Findingthe Median

The median of n items is defined as that item wigdess than (or equal to) half of the n items ahdth is
larger than (or equal to) the other half of théemis. For example, the median of

16 12 99 95 18 87 10

is 18. The problem of finding the median is custdlya&onnected with that of sorting, because theials
method of determining the median is to sort thdems$ and then to pick the item in the middle. But
partitioning yields a potentially much faster wdyfinding the median. The method to be displayesilga
generalizes to the problem of finding the k th destlof n items. Finding the median representssfiexial
case k =n/2.

The algorithm invented by C.A.R. Hoare [2-4] functs as follows. First, the partitioning operatioh o
Quicksort is applied with L = 0 and R = n and vaglselected as splitting value x. The resulting indakies
i and j are such that

1.a<x forallh <i
2.8,>X for allh > j
3.i>]

There are three possible cases that may arise:

1. The splitting value x was too small; as a resh# limit between the two partitions is below thesired
value k. The partitioning process has to be repeapen the elements .a & (see Fig. 2.9).
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Fig. 2.9. Bound x too small



2.The chosen bound x was too large. The splittipgration has to be repeated on the partition. &
(see Fig. 2.10).
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Fig. 2.10. Bound x too large

3.j < k < i: the element ak splits the array inkm partitions in the specified proportions andréfiere is
the desired quantile (see Fig. 2.11).
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Fig. 2.11. Correct bound

The splitting process has to be repeated until 8aa#ses. This iteration is expressed by the vdgtig piece
of program:

L:=0;R :=n;

WHILE L < R-1 DO
x := a[k]; partition(a[L] ... a[R-1]);
IFj<kTHEN L:=iEND;
IFk<iTHEN R :=jEND

END

For a formal proof of the correctness of this aithon, the reader is referred to the original agticly Hoare.
The entire proceduriéind is readily derived from this.

PROCEDURE Find(k: INTEGER);
(*reorder a such that a[k] is k-th largest*)
VAR L, R, i, j; INTEGER; w, x: Item;
BEGIN L :=0; R :=n-1,
WHILE L < R-1 DO
x=alk];i=L;j=R;
REPEAT
WHILE a[i] <xDOi:=i+1 END;
WHILE x< a[j] DO j:= -1 END;
IFi<=]THEN
w = ai]; afi] == afj]; afi] := w; i=i+1;j:=j-1
END
UNTIL i > j;
IFj<kTHENL:=iEND;
IFk<iTHEN R :=jEND
END
END Find

If we assume that on the average each split héihesize of the partition in which the desired dilarties,
then the number of necessary comparisons is

n+n/2+n/4+..+% 2n

i.e., it is of order n. This explains the powertod program Find for finding medians and similaauwiles,
and it explains its superiority over the straightfard method of sorting the entire set of candildtefore
selecting the k th (where the best is of orderlag(n)). In the worst case, however, each pariitigrstep
reduces the size of the set of candidates only, lbgsulting in a required number of comparisonsrdér n2.
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Again, there is hardly any advantage in using dtgerithm, if the number of elements is small, dawer
than 10.

2.3.5. A Comparison of Array Sorting M ethods

To conclude this parade of sorting methods, wel shato compare their effectiveness. If n dendtes
number of items to be sorted, C and M shall ag&indsfor the number of required key comparisons and
item moves, respectively. Closed analytical forrmutan be given for all three straight sorting megho
They are tabulated in Table 2.8. The column headm@, avg, maxspecify the respective minima,
maxima, and values averaged over all n! permutsiidm items.

min avg max
Straight C= n-1 (n2 +n-2)/4 (n2-n)/2-1
insertion M = 2(n-1) (n2 -9n -10)/4 (n2 -3n -2)/
Straight C= (n2 - n)/2 (n2 - n)/2 (n2 - n)/2
selection M = 3(n-1) n*(Inn + 0.57) n2/4 + 3(n-1)
Straight C= (n2-n)/2 (n2-n)/2 (n2-n)/2
exchange M= 0 (n2-n)*0.75 (n2-n)*1.5

Table 2.8. Comparison of straight sorting methods.

No reasonably simple accurate formulas are availablthe advanced methods. The essential facthatre
the computational effort needed is &*in the case of Shellsort and is c*n*log n in tleses of Heapsort
and Quicksort, where the c are appropriate coeffisi

These formulas merely provide a rough measure dbpeance as functions of n, and they allow the
classification of sorting algorithms into primitivetraight methods (n2) and advanced or "logarithmi
methods (n*log(n)). For practical purposes, howgiteés helpful to have some experimental data labe
that shed light on the coefficients ¢ which furtéstinguish the various methods. Moreover, thenfdas

do not take into account the computational effagemded on operations other than key comparisods an
item moves, such as loop control, etc. Clearlys¢hiactors depend to some degree on individuaémgst
but an example of experimentally obtained dataeigertheless informative. Table 2.9 shows the tifires
seconds) consumed by the sorting methods previaistyissed, as executed by the Modula-2 system on a
Lilith personal computer. The three columns conthie times used to sort the already ordered aaay,
random permutation, and the inversely ordered affagle 2.9 is for 256 items, Table 2.10 for 20#8nis.
The data clearly separate tifermethods from the nxlog(n) methods. The followirmints are noteworthy:

1. The improvement of binary insertion over straigisertion is marginal indeed, and even negativthé
case of an already existing order.

2.Bubblesort is definitely the worst sorting methemong all compared. Its improved version Shakeiso
still worse than straight insertion and straighéesion (except in the pathological case of soréngprted
array).

3. Quicksort beats Heapsort by a factor of 2 tt 8orts the inversely ordered array with speedtmally
identical to the one that is already sorted.

Ordered Random Inverse
Straightinsertion 0.02 0.82 1.64
Binarylnsertion 0.12 0.70 1.30
StraightSelection 0.94 0.96 1.18
BubbleSort 1.26 2.04 2.80
ShakerSort 0.02 1.66 2.92
ShellSort 0.10 0.24 0.28
HeapSort 0.20 0.20 0.20
QuickSort 0.08 0.12 0.08
NonRecQuickSort  0.08 0.12 0.08

StraightMerge 0.18 0.18 0.18
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Table 2.9. Execution times of sort programs with 2ements

Ordered Random Inverse
Straightinsertion 0.22 50.74 103.80
Binarylnsertion 1.16 37.66 76.06
StraightSelection 58.18 58.34 73.46
BubbleSort 80.18 128.84 178.66
ShakerSort 0.16 104.44 187.36
ShellSort 0.80 7.08 12.34
HeapSort 2.32 2.22 2.12
QuickSort 0.72 1.22 0.76
NonRecQuickSort  0.72 1.32 0.80
StraightMerge 1.98 2.06 1.98

Table 2.10. Execution times of sort programs widh& elements

24. Sorting Sequences

24.1. Straight Merging

Unfortunately, the sorting algorithms presentedhia preceding chapter are inapplicable, if the arhat

data to be sorted does not fit into a computeris stare, but if it is, for instance, representedagperipheral

and sequential storage device such as a tapeisk.drdthis case we describe the data as a (stgl)dile

whose characteristic is that at each moment oneoah/done component is directly accessible. Thia is

severe restriction compared to the possibilitiderefl by the array structure, and therefore diffesarting

techniques have to be used. The most importantsoserting by merging. Merging (or collating) means

combining two (or more) ordered sequences intmglesj ordered sequence by repeated selection atheng

currently accessible components. Merging is a naiotpler operation than sorting, and it is usedras a

auxiliary operation in the more complex processefuential sorting. One way of sorting on the basis

merging, calledstraight mergingis the following:

1. Split the sequence a into two halves, calleddbca

2.Merge b and ¢ by combining single items intoeoed pairs.

3.Call the merged sequence a, and repeat stepsl 2 ,athis time merging ordered pairs into ordered
quadruples.

4.Repeat the previous steps, merging quadrupie®atets, and continue doing this, each time doglithe
lengths of the merged subsequences, until theeesggiuence is ordered.

As an example, consider the sequence
44 55 12 42 94 18 06 67
In step 1, the split results in the sequences

44 55 12 42
94 18 06 67

The merging of single components (which are ordssggliences of length 1), into ordered pairs yields
44 94" 18 55" 06 12" 42 67

Splitting again in the middle and merging orderad9yields
06 12 44 94" 18 42 55 67

A third split and merge operation finally produdles desired result
06 12 18 42 44 55 67 94

Each operation that treats the entire set of date @s called phase and the smallest subprocess that by
repetition constitutes the sort process is callgzhss or a stage. In the above example the sdctthwee
passes, each pass consisting of a splitting pmaka eerging phase. In order to perform the dortettapes
are needed; the process is therefore called athapeemerge.
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Actually, the splitting phases do not contributette sort since they do in no way permute the iteams
sense they are unproductive, although they cotwestitalf of all copying operations. They can be &lated
altogether by combining the split and the mergesphinstead of merging into a single sequenceguktgut

of the merge process is immediately redistributetb dawo tapes, which constitute the sources of the
subsequent pass. In contrast to the previous tasemerge sort, this method is callesingle-phase merge
or abalanced mergdt is evidently superior because only half as yneopying operations are necessary; the
price for this advantage is a fourth tape.

We shall develop a merge program in detail andaihjtlet the data be represented as an array which
however, is scanned in strictly sequential fashidater version of merge sort will then be basedtte
sequence structure, allowing a comparison of treegmgrams and demonstrating the strong dependdgnce
the form of a program on the underlying represémaif its data.

A single array may easily be used in place of tequences, if it is regarded as double-ended. lhstéa
merging from two source files, we may pick itemgtbe two ends of the array. Thus, the general fofm
the combined merge-split phase can be illustratezhawn in Fig. 2.12. The destination of the meri¢eds
is switched after each ordered pair in the firstispafter each ordered quadruple in the second gtassthus
evenly filling the two destination sequences, repntéed by the two ends of a single array. Aftehesass,
the two arrays interchange their roles, the sobem®mes the new destination, and vice versa.

source destination

distribute

Fig. 2.12. Straight merge sort with two arrays

A further simplification of the program can be awshgd by joining the two conceptually distinct agé@sto a
single array of doubled size. Thus, the data vélrépresented by

a: ARRAY 2*n OF item

and we let the indices i and j denote the two @mitems, whereas k and L designate the two déistirza
(see Fig. 2.12). The initial data are, of courke,ittms al ... an. Clearly, a Boolean variablésupeeded to
denote the direction of the data flow; up shall méaat in the current pass components..aa.; will be
moved up to the variableg a. a,1, whereas ~up will indicate that a. &,.1 will be transferred down into
& ... &1 The value of up strictly alternates between coumtsee passes. And, finally, a variable p is
introduced to denote the length of the subsequeiocke merged. Its value is initially 1, and itdeubled
before each successive pass. To simplify mattereadat, we shall assume that n is always a pow@r of
Thus, the first version of the straight merge pangassumes the following form:

PROCEDURE MergeSort;
VAR, j, k, L, p: INTEGER; up: BOOLEAN;
BEGIN up := TRUE; p := 1,
REPEAT initialize index variables;
IFup THEN i:=0;j:=n-1;k :=n; L :=2*h
ELSEk:=0;L:=n-1;i:=n;j:=2*n-1
END ;
merge p-tuples from i- and j-sources to ld brdestinations;
up :=~up; p = 2*p
UNTILp=n
END MergeSort

In the next development step we further refinedtaements expressed in italics. Evidently, thegmgrass
involving n items is itself a sequence of mergeseaxjuences, i.e. of p-tuples. Between every sudiapa
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merge the destination is switched from the lowethtoupper end of the destination array, or viosaeto
guarantee equal distribution onto both destinatitfriee destination of the merged items is thedopend of
the destination array, then the destination inddg and k is incremented after each move of an.itethey
are to be moved to the upper end of the destinatiay, the destination index is L, and it is dewated
after each move. In order to simplify the actuatgeestatement, we choose the destination to bgrosed

by k at all times, switching the values of the &htés k and L after each p-tuple merge, and dethete
increment to be used at all times by h, where kitiser 1 or -1. These design discussions lead @o th
following refinement:

h:=1; m:=n; (*m=no. of items to be merged*)
REPEAT q :=p;r:=p; m:=m- 2*p;
merge q items from i-source with r items frosojirce.
destination index is k. increment k by h;
h := -h;exchange k and L
UNTILm=0

In the further refinement step the actual mergtestant is to be formulated. Here we have to keepiird
that the tail of the one subsequence which isnleft-empty after the merge has to be appended toutipeit
sequence by simple copying operations.

WHILE (q >0) & (r>0) DO
IF a[i] < a[j] THEN
move an item from i-source to k-destinatiatiyance i and k; q :=g-1
ELSE
move an item from j-source to k-destinatiadiyance jand k; r:=r-1
END
END ;
copy tail of i-sequence; copy tail of j-sequence

After this further refinement of the tail copyingerations, the program is laid out in complete ileBafore
writing it out in full, we wish to eliminate thestiction that n be a power of 2. Which parts & #igorithm
are affected by this relaxation of constraints?&égily convince ourselves that the best way to edgfhethe
more general situation is to adhere to the old otkts long as possible. In this example this mézatave
continue merging p-tuples until the remaindershefsource sequences are of length less than prihand
only part that is influenced are the statement$ dedermine the values of g and r, the lengthshef t
sequences to be merged. The following four statésmreplace the three statements

g:=p; r:=p;, m:=m-2*p

and, as the reader should convince himself, theyesent an effective implementation of the strategy
specified above; note that m denotes the total murobitems in the two source sequences that retodie
merged:

IFm>=pTHENQ :=p ELSEq:=mEND;

m = m-q;
IFm>=pTHENTr:=p ELSEr:=mEND;
m = m-r

In addition, in order to guarantee termination ltd program, the condition p=n, which controls tiigenp
repetition, must be changed tem. After these modifications, we may now proceedéscribe the entire
algorithm in terms of a procedure operating onglobal array a with 2n elements.

PROCEDURE StraightMerge;
VAR, |, k, L, t: INTEGER; (*index range @fis O .. 2*n-1 %)
h, m, p, g, r: INTEGER; up: BOOLEAN;
BEGIN up := TRUE; p := 1,
REPEAT h:=1; m:=n;
IFup THEN i:=0;j:=n-1;k :=n; L :=2*h
ELSEk:=0;L:=n-1;i:=n;j:=2*n-1
END ;



REPEAT (*merge a run from i- and j-sourceg&-estination*)
IFm>=pTHENq:=p ELSEq:=mEND ;

m = m-q;
IFm>=pTHEN T r:=p ELSEr:=mEND;
m = m-r;

WHILE (q > 0) & (r >0) DO
IF a[i] < a[j] THEN
alk] .= a[i]; k :=k+h;i:=i+1;, ¢ g-1
ELSE
alk] :=af; k :=k+h;j:=j1;=r-1
END
END ;
WHILE r >0 DO
alk] ;= afj]; k :=k+h;j:=j1;r+1
END ;
WHILE q > 0 DO
alk] ;= a[i]; k .= k+h;i:=i+1;q :g-1

END ;
h:=-h;t=k;k=L;L:=t
UNTIL m =0;
up :=~up; p ;= 2*p
UNTIL p >=n;
IF ~up THEN
FORi:=1 TO n DO a]i] := a[i+n] END
END

END StraightMerge

Analysis of MergesortSince each pass doubles p, and since the stetngnated as soon as p > n, it
involves ilog nj passes. Each pass, by definitioopies the entire set of n items exactly once. As a
consequence, the total number of moves is exactly

M = n x log(n)

The number C of key comparisons is even less thamb no comparisons are involved in the tail copy
operations. However, since the mergesort techniguasually applied in connection with the use of
peripheral storage devices, the computational tiffieolved in the move operations dominates therefff
comparisons often by several orders of magnitudke detailed analysis of the number of comparisens i
therefore of little practical interest.

The merge sort algorithm apparently compares withi even the advanced sorting techniques discussed
the previous chapter. However, the administrativerfoead for the manipulation of indices is reldivggh,
and the decisive disadvantage is the need forgaasé 2n items. This is the reason sorting by nmgrgs
rarely used on arrays, i.e., on data located imms#ire. Figures comparing the real time behavidhis
Mergesort algorithm appear in the last line of EaBl9. They compare favorably with Heapsort but
unfavorably with Quicksort.

2.4.2. Natural Merging

In straight merging no advantage is gained wherd#ta are initially already partially sorted. Teadth of

all merged subsequences in the k th pass is less ¢h equal to 2k, independent of whether longer
subsequences are already ordered and could abevefierged. In fact, any two ordered subsequences of
lengths m and n might be merged directly into glsisequence of m+n items. A mergesort that atiamgy
merges the two longest possible subsequencedas ealatural mergesort.

An ordered subsequence is often called a stringueder, since the word string is even more freqyeirged
to describe sequences of characters, we will fokowth in our terminology and use the wauch instead of
string when referring to ordered subsequences. V@& subsequence.a g such that

(3a1>a) & (AK:i<K<j:a<aw)&(@>g.)
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a maximal runor, for short, a run. A natural merge sort, themef merges (maximal) runs instead of
sequences of fixed, predetermined length. Runs tmevproperty that if two sequences of n runs ageged,

a single sequence of exactly n runs emerges. Tdretghe total number of runs is halved in eacts pasd
the number of required moves of items is in thesivoase n*log(n), but in the average case it is deoss.
The expected number of comparisons, however, ishntarger because in addition to the comparisons
necessary for the selection of items, further campas are needed between consecutive items offdach
in order to determine the end of each run.

Our next programming exercise develops a naturajenalgorithm in the same stepwise fashion that was
used to explain the straight merging algorithmentploys the sequence structure (represented Isy fiee
Sect. 1.8) instead of the array, and it represemisnbalanced, two-phase, three-tape merge sorasgiene
that the file variablec represents the initial sequence of items. (Ndiyrah actual data processing
application, the initial data are first copied frahe original source to c for reasons of safey.andb are

two auxiliary file variables. Each pass consista dfstribution phase that distributes runs equetiym c to a
and b, and a merge phase that merges runs frogh la tanc. This process is illustrated in Fig. 2.13.

a a a
c c c c c
b b b

-
L merge phase
distribution phase
—
1% run 2" run n" run

Fig. 2.13. Sort phases and passes

17 31' 05 59' 13 41 43 67' 11 23 29 47' 03 07 7A'X® 57" 37 61
05 17 31 59' 11 13 23 29 41 43 47 67' 02 03 07 1® A' 37 61
05 11 13 17 23 29 31 41 43 47 59 67' 02 03 07 1953761 71
02 03 05 07 11 13 17 19 23 29 31 37 41 43 47 5763967 71

Table 2.11. Example of a Natural Mergesort.

As an example, Table 2.11 shows the file c in itgioal state (linel) and after each pass (line§ i a
natural merge sort involving 20 numbers. Note trdy three passes are needed. The sort termiratmoa

as the number of runs on c is 1. (We assume tlegie tbxists at least one non-empty run on the linitia
sequence). We therefore let a variable L be usedofanting the number of runs merged onto c. Byingak
use of the typ®Riderdefined in Sect. 1.8.1, the program can be fortadlas follows:

VAR L: INTEGER,;
ro, rl, r2: Files.Rider; (*see 1.8.1%)

REPEAT Files.Set(r0, a, 0); Files.Set(r1, b, OesBet(r2, c, 0);
distribute(r2, r0, rl); (*cto a and b*)
Files.Set(r0, a, 0); Files.Set(r1, b, 0); Fibet(r2, c, 0);
L :=0; merge(r0, r1, r2) (*a and b into c*)

UNTILL=1

The two phases clearly emerge as two distinctrattés. They are now to be refined, i.e., expressatbre
detail. The refined descriptions distribute(from rider r2 to riders rO and rl) anterge(from riders rO and
rl to rider r2) follow:
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REPEAT copyrun(r2, r0);
IF ~r2.eof THEN copyrun(r2, r1) END
UNTIL r2.eof

REPEAT mergerun(r0, r1, r2); INC(L)
UNTIL rl.eof;
IF ~r0.eof THEN copyrun(rO, r2); INC(L) END

This method of distribution supposedly resultsither equal numbers of runs in both a and b, aeuence

a containing one run more than b. Since correspgnglairs of runs are merged, a leftover run malytsti
on file a, which simply has to be copied. The statiets merge and distribute are formulated in tesfres
refined statememhergerunand a subordinate procedwapyrunwith obvious tasks. When attempting to do
S0, one runs into a serious difficulty: In orderdigtermine the end of a run, two consecutive keystrbe
compared. However, files are such that only a sietgment is immediately accessible. We eviderathnot
avoid to look ahead, i.e to associate a buffer @ithry sequence. The buffer is to contain the dilmtnent of
the file still to be read and constitutes somettikeya window sliding over the file.

Instead of programming this mechanism explicithpiour program, we prefer to define yet anotheell®f
abstraction. It is represented by a new modRues It can be regarded as an extension of moHilés of
Sect. 1.8, introducing a new typader, which we may consider as an extension of types.Rider This
new type will not only accept all operations avaléaon Riders and indicate the end of a file, dab a
indicate the end of a run and the first elemerthefremaining part of the file. The new type aslhaslits
operators are presented by the following definition

DEFINITION Runs;
IMPORT Files, Texts;
TYPE Rider = RECORD (Files.Rider) first: INTEGEeor: BOOLEAN END ;

PROCEDURE OpenRandomsSeq(f: Files.File; length, sS&&EGER);
PROCEDURE Set (VAR r: Rider; VAR f: Files.File);
PROCEDURE copy(VAR source, destination: Rider);
PROCEDURE ListSeq(VAR W: Texts.Writer; f: Files &)

END Runs.

A few additional explanations for the choice of fhv@cedures are necessary. As we shall see, ttiegsor
algorithms discussed here and later are based pyingpelements from one file to another. A procedur
copytherefore takes the place of separate read ame opérations.

For convenience of testing the following examples,also introduce a proceduristSeq converting a file
of integers into a text. Also for convenience adithal procedure is include@penRandomsSeqitializes
a file with numbers in random order. These two pduces will serve to test the algorithms to beudised
below. The values of the fieldsof andeor are defined as results obpyin analogy toeof having been
defined as result of a read operation.

MODULE Runs;
IMPORT Files, Texts;
TYPERIider* = RECORD (Files.Riderjirst: INTEGER;eor: BOOLEAN END ;

PROCEDURBEOpenRandomSeq*( f: Files.File; length, seed: INTEGER);
VAR i: INTEGER; w: Files.Rider;
BEGIN Files.Set(w, f, 0);
FORi:=0 TO length-1 DO
Files.WriteInt(w, seed); seed := (31*seld@D 997 + 5
END ;
Close(f)
END OpenRandomSeq;

PROCEDURESet*(VAR r: Rider; f: Files.File);
BEGIN Files.Set(r, f, 0); Files.Read (r, r.firatleor := r.eof
END Set;



PROCEDUREcopy*(VAR src, dest: Rider);

BEGIN dest.first := src.first;
Files.Write(dest, dest.first); Files.Read(src.first);
src.eor := src.eof OR (src.first < dest.first

END copy;

PROCEDURH.istSeq*(VAR W: Texts; f: Files.File;);
VAR x, vy, k, n: INTEGER, r: Files.Rider;
BEGIN k := 0; n := 0; Files.Set(r, f, 0); Files.Ridat(r, X);
WHILE ~r.eof DO
Texts.Writelnt(W, X, 6); INC(k); Files.Ref@, y);
IF y <x THEN (*run ends*) Texts.Write(W’); INC(n) END ;
X:=y
END ;
Texts.Write(W, “$"); Texts.WriteIlnt(W, k, 5Texts.WriteInt(W, n, 5);
Texts.WriteLn(W)
END ListSeq;

END Runs.

We now return to the process of successive refinewfethe process of natural merging. Procedomyrun
and the statemennergeare now conveniently expressible as shown beloate Nhat we refer to the
sequences (files) indirectly via the riders attactoethem. In passing, we also note that the ridiéeld first
represents theextkey on a sequence being read, andabkikey of a sequence being written.

PROCEDURE copyrun(VAR x, y: Runs.Rider);
BEGIN (*copy from x to y*)

REPEAT Runs.copy(x, ¥) UNTIL x.eor
END copyrun

(*merge from r0 and rl to r2*)
REPEAT
IF r0.first < r1.first THEN
Runs.copy(r0, r2);
IF rO.eor THEN copyrun(rl, r2) END
ELSE Runs.copy(rl, r2);
IF rl.eor THEN copyrun(r0, r2) END
END
UNTIL rO.eor OR rl.eor

The comparison and selection process of keys igimg®@ run terminates as soon as one of the twe isun
exhausted. After this, the other run (which is exitausted yet) has to be transferred to the reguitin by
merely copying its tail. This is done by a calpobcedurecopyrun

This should supposedly terminate the developmerh®fatural merging sort procedure. Regrettably, t
program is incorrect, as the very careful readey heve noticed. The program is incorrect in theseethat
it does not sort properly in some cases. Consideexample, the following sequence of input data:

0302051107 131917 23 3129 37 43 41 47 581571 67
By distributing consecutive runs alternately tond &, we obtain

a=03'071319'293743'5761 71
b=020511"'172331"'414759'67

These sequences are readily merged into a singlewhereafter the sort terminates successfully. The
example, although it does not lead to an erroné@lmviour of the program, makes us aware that mere
distribution of runs to serveral files may resumlta number of output runs that is less than thebmurof
input runs. This is because the first item of thend run may be larger than the last item of tkie fiun,
thereby causing the two runs to merge automatiaatidya single run.



Although procedurdistribute supposedly outputs runs in equal numbers to tlee files, the important

consequence is that the actual number of resuitting ona andb may differ significantly. Our merge
procedure, however, only merges pairs of runs andibhates as soon bds read, thereby losing the tail of
one of the sequences. Consider the following irgata that are sorted (and truncated) in two sulesgqu
passes:

17 19 13 57 23 29 11 59 31 37 07 6148105 67 47 71 02 03
13 17 19 23 29 31 37 41 43 47 57 71591
11 13 17 19 23 29 31 37 41 43 47 57739

Table 2.12 Incorrect Result of Mergesort Program.

The example of this programming mistake is typiftal many programming situations. The mistake is
caused by an oversight of one of the possible cpesees of a presumably simple operation. It is als
typical in the sense that serval ways of corredfirggmistake are open and that one of them has thbsen.
Often there exist two possibilities that differarvery important, fundamental way:

1.We recognize that the operation of distributisnincorrectly programmed and does not satisfy the
requirement that the number of runs differ by astrio We stick to the original scheme of operatiad
correct the faulty procedure accordingly.

2.We recognize that the correction of the fauliyt pnvolves far-reaching modifications, and we ttyfind
ways in which other parts of the algorithm may banged to accommodate the currently incorrect part.

In general, the first path seems to be the salieaner one, the more honest way, providing a fegrele of
immunity from later consequences of overlookedidate side effects. It is, therefore, the way talva
solution that is generally recommended.

It is to be pointed out, however, that the secpassibility should sometimes not be entirely igeor is
for this reason that we further elaborate on thksngple and illustrate a fix by modification of theerge
procedure rather than the distribution procedutechvis primarily at fault.

This implies that we leave the distribution scham®uched and renounce the condition that rungibally
distributed. This may result in a less than optippatformance. However, the worst-case performance
remains unchanged, and moreover, the case of higidgual distribution is statistically very unlikel
Efficiency considerations are therefore no seranggsiment against this solution.

If the condition of equal distribution of runs ranber exists, then the merge procedure has todeyeld so
that, after reaching the end of one file, the enti#il of the remaining file is copied instead th@st one
run. This change is straightforward and is verypdarin comparison with any change in the distrituiti
scheme. (The reader is urged to convince himseHlefruth of this claim). The revised versiontwd terge
algorithm is shown below in the form of a functiprocedure:

PROCEDURE NaturalMerge(src: Files.File): Files.File
VAR L: INTEGER; (*no. of runs merged*)
fo, f1, f2: Files.File;
r0, r1, r2: Runs.Rider;

PROCEDURE copyrun(VAR x, y: Runs.Rider);
BEGIN (*from x to y*)

REPEAT Runs.copy(x, ¥) UNTIL x.eor
END copyrun;

BEGIN Runs.Set(r2, src);

REPEAT f0 := Files.New("test0"); Files.Set(r0, @);
fl := Files.New("test1"); Files.Set (r1, f1, 0);
(*distribute from r2 to rO and r1*)

REPEAT copyrun(r2, r0);
IF ~r2.eof THEN copyrun(r2, r1) END
UNTIL r2.eof;
Runs.Set(r0, f0); Runs.Set(r1, f1);
f2 := Files.New("); Files.Set(r2, f2,0); L :5 0
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(*merge from r0 and rl to r2*)
REPEAT
REPEAT
IF r0.first < r1.first THEN
Runs.copy(r0, r2);
IF rO.eor THEN copyrun(rl, r2) END
ELSE Runs.copy(rl, r2);
IF rl.eor THEN copyrun(r0, r2) END
END
UNTIL rO.eor OR rl.eor;
INC(L)
UNTIL rO.eof OR rl.eof;
WHILE ~r0.eof DO copyrun(rO, r2); INC(L) END ;
WHILE ~rl.eof DO copyrun(rl, r2); INC(L) END ;
Runs.Set(r2, f2)
UNTILL =1,
RETURN f2
END NaturalMerge;

2.4.3. Balanced M ultiway M erging

The effort involved in a sequential sort is proporal to the number of required passes since, figitien,
every pass involves the copying of the entire §eflata. One way to reduce this number is to distebruns
onto more than two files. Mergimgruns that are equally distributed bifiles results in a sequence of r/N
runs. A second pass reduces their number t gihird pass to rfiland aftekk passes there are fKuns
left. The total number of passes required to satéms by N-way merging is therefore k =@g). Since
each pass requirescopy operations, the total number of copy openatis in the worst case M = nx|dg)

As the next programming exercise, we will develogog program based on multiway merging. In order t
further contrast the program from the previous ratiwo-phase merging procedure, we shall forneuliae
multiway merge as a single phase, balanced merg&dds implies that in each pass there are anlequa
number of input and output files onto which consigeuruns are alternately distributed. Using fles, the
algorithm will therefore be based on N-way mergiRgllowing the previously adopted strategy, we wot
bother to detect the automatic merging of two coutiee runs distributed onto the same file. Consedjy,

we are forced to design the merge program whitlsatiming strictly equal numbers of runs on thetinpu
files.

In this program we encounter for the first timesdunal application of a data structure consistihgroays of
files. As a matter of fact, it is surprising howostgly the following program differs from the preus one
because of the change from two-way to multiway tingrgThe change is primarily a result of the
circumstance that the merge process can no loniggrysbe terminated after one of the input runs is
exhausted. Instead, a list of inputs that are atiliive, i.e., not yet exhausted, must be kept.tiAero
complication stems from the need to switch the gsoaf input and output files after each pass. Hieee
indirection of access to files via riders comeshandy. In each pass, data may be copied from time sa
riders r to the same riders w. At the end of eaa$spve merely need to reset the input and outiest th
different riders.

Obviously, file numbers are used to index the aoffiles. Let us then assume that the initial fdethe
parametesrc, and that for the sorting proceds flles are available:

f, g: ARRAY N OF Files.File;
r, w: ARRAY N OF Runs.Rider

The algorithm can now be sketched as follows:

PROCEDURE BalancedMerge(src: Files.File): Fileg;Fil
VAR i, j: INTEGER;
L: INTEGER; (*no. of runs distributed*)
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R: Runs.Rider;
BEGIN Runs.Set(R, src); (*distribute initial rufiem R to w[0] ... w[N-1]*)
j=0;L:=0;
position riders w on files g;
REPEAT
copy one run from R to w[j];
INC(j); INC(L);
IFj=NTHEN:=0END
UNTIL R.eof;

REPEAT (*merge from riders r to riders w*)
switch files g to riders;
L :=0;j:=0; (* =index of output file*)
REPEAT INC(L);
merge one run from inputs to w[j];
IFj<N THEN INC(j) ELSE j:= 0 END
UNTIL all inputs exhausted;
UNTILL=1
(*sorted file is with w[0]*)
END BalancedMerge.

Having associated a rid& with the source file, we now refine the statemfentthe initial distribution of
runs. Using the definition afopy we replaceopy one run from R to wlpy:

REPEAT Runs.copy(R, w[j]) UNTIL R.eor

Copying a run terminates when either the first itihthe next run is encountered or when the enthef
entire input file is reached.

In the actual sort algorithm, the following staterseremain to be specified in more detail:

1. Position riders w on files g

2. Merge one run from inputs tq w
3. Switch files g to riders r

4. All inputs exhausted

First, we must accurately identify the current inpequences. Notably, the numbeacfiveinputs may be
less than N. Obviously, there can be at most ag/maimrces as there are runs; the sort terminatescasas
there is one single sequence left. This leaves tpepossibility that at the initiation of the lasirt pass
there are fewer thaN runs. We therefore introduce a variable, kByto denote the actual number of inputs
used. We incorporate the initializationkdfin the statemergwitch filesas follows:

IFL<NTHENKL :=LELSEKL:=NEND;
FOR i:= 0 TO k1-1 DO Runs.Set(r[i], g[ij) END

Naturally, statement (2) is to decremkhtwhenever an input source ceases. Hence, predibateay easily

be expressed by the relation k1 = 0. Statementh@yever, is more difficult to refine; it consigi$ the
repeated selection of the least key among the ablail sources and its subsequent transport to the
destination, i.e., the current output sequence. piroeess is further complicated by the necessity of
determining the end of each run. The end of a rap bbe reached because (1) the subsequent key ith&es

the current key or (2) the end of the source iched. In the latter case the source is eliminated b
decrementinkl; in the former case the run is closed by excludivg sequence from further selection of
items, but only until the creation of the currentput run is completed. This makes it obvious thaecond
variable, sak?, is needed to denote the number of sources agtaadlilable for the selection of the next
item. This value is initially set equal kd and is decremented whenever a run teminates keodasndition

D).
Unfortunately, the introduction &R is not sufficient. We need to know not only thentner of files, but also

which files are still in actual use. An obviouswd@n is to use an array with Boolean componerd&ating
the availability of the files. We choose, howeedifferent method that leads to a more efficieiéaion
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procedure which, after all, is the most frequendgeated part of the entire algorithm. Instead sifigi a
Boolean array, a file index map, sys introduced. This map is used so that i, ; are the indices of the
available sequences. Thus statement (2) can beifmied as follows:

k2 :=Kk1;
REPEATselect the minimal key, let tfim] be the sequeneelrar on which it occurs
Runs.copy(r[tim]], w(jl);
IF r[tfm]].eof THENeliminate sequence
ELSIF r[tfm]].eor THENCclose run
END
UNTILK2 =0

Since the number of sequences will be fairly srfa@llany practical purpose, the selection algoritienbe
specified in further detail in the next refinematép may as well be a straightforward linear seaftie
statementliminate sequendenplies a decrease of k1 as well as k2 and atsassignment of indices in the
map t. The statementlose runmerely decrements k2 and rearranges componertsaafordingly. The
details are shown in the following procedure, beimg last refinement. The statememtitch sequenceds
elaborated according to explanations given earlier.

PROCEDURE BalancedMerge(src: Files.File): Fileg;Fil
VAR |, j, m, tx: INTEGER,;
L, k1, k2: INTEGER;
min, X: INTEGER;
t: ARRAY N OF INTEGER; (*index map*)
R: Runs.Rider; (*source*)
f, g: ARRAY N OF Files.File;
r, w: ARRAY N OF Runs.Rider;

BEGIN Runs.Set(R, src);
FOR i:=0 TO N-1 DO ¢][i] := Files.New("); FileSet(w[i], g[i], 0) END ;
(*distribute initial runs from src to g[0] ... gHi]*)
j:=0;L:=0;
REPEAT
REPEAT Runs.copy(R, w[j]) UNTIL R.eor;
INC(L); INC(j);
IFj=NTHEN j:=0 END
UNTIL R.eof;

FORi:=0TO N-1 DO {[i]:=i END ;
REPEAT
IFL<NTHENK1:=LELSEKkl:=NEND;
FOR i:=0 TO k1-1 DO Runs.Set(r]i], g[i]) END(¥set input riders*)
FORi:=0 TO k1-1 DO (]i] := Files.New("); FgeSet(w[i], g[i], 0) END ; (*set output riders*)
(*merge from r[0] ... r[N-1] to w[O] ... W[N-1]*)
FORi:=0TO N-1 DO {[i] ;=i END ;

L:=0; (*nofruns merged*)

j=0;
REPEAT (*merge one run from inputs to w[j]*)
INC(L); k2 := K1;

REPEAT (*select the minimal key*)

m := 0; min ;= r[t[0]].first; i == 1;

WHILE i < k2 DO
X = r[t[i]].first;
IF x <min THEN min :=x; m :=i END ;
INC(i)

END ;

Runs.copy(r[t{m]], w(j]);
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IF r[t[m]].eof THEN (*eliminate this sequence?*)
DEC(k1); DEC(k2); tim] := t[k2]; t[k2] := t[kL
ELSIF r[t[m]].eor THEN (*close run¥*)
DEC(k2); tx := t[m]; t[m] := t[k2]; t[k2] :=x
END
UNTIL k2 = 0;
INC();
IFj=NTHEN :=0END
UNTILK1 =0
UNTILL = 1;
RETURN Files.Base(w[t[0]])
END BalancedMerge

2.4.4. Polyphase Sort

We have now discussed the necessary techniqudsaaedacquired the proper background to investigatke
program yet another sorting algorithm whose peréoree is superior to the balanced sort. We havetbeg¢n
balanced merging eliminates the pure copying opastnecessary when the distribution and the mergin
operations are united into a single phase. Thetiguearises whether or not the given sequencesidoeil
processed even more efficiently. This is indeedctse; the key to this next improvement lies inndioaing
the rigid notion of strict passes, i.e., to usegbguences in a more sophisticated way than byyalhaving
N/2 sources and as many destinations and exchasginges and destinations at the end of each distin
pass. Instead, the notion of a pass becomes diffireemethod was invented by R.L. Gilstad [2-3] aalied
Polyphase Sort.

It is first illustrated by an example using threggences. At any time, items are merged from twoces
into a third sequence variable. Whenever one okthece sequences is exhausted, it immediatelyniexo
the destination of the merge operations of data fiee non-exhausted source and the previous destina
sequence.

As we know thah runs on each input are transformed intouns on the output, we need to list only the
number of runs present on each sequence (insteapecffying actual keys). In Fig. 2.14 we assuna th
initially the two input sequencd$ andf2 contain 13 and 8 runs, respectively. Thus, infittsé pass 8 runs
are merged fronfil andf2 to f3, in the second pass the remaining 5 runs are mhdrgem f3 andfl ontof2,
etc. In the endil is the sorted sequence.

f1 f2 3
13 8
N N
-
5 0 8

Fig. 2.14. Polyphase mergesort of 21 runs withcdisaces



A second example shows the Polyphase method wstg@ences. Let there initially be 16 rungrl5 on
f2, 14 onf3, 12 onf4, and 8 orf5. In the first partial pass, 8 runs are merged ittn the endf2 contains
the sorted set of items (see Fig. 2.15).

f1 f2 3 4 f6
16 15 14 12
- N N N
—
8 7 6 4 8

(=} = N A%o (oo il

1 0 1 1 1
0 1 0 0 0

Fig. 2.15. Polyphase mergesort of 65 runs withcfiisaces

Polyphase is more efficient than balanced mergauses; giveN sequences, it always operates witiNaf-
way merge instead of &W2-way merge. As the number of required passes igappately log, n, nbeing
the number of items to be sorted aXdoeing the degree of the merge operations, Polgpopasmises a
significant improvement over balanced merging.

Of course, the distribution of initial runs was efaitly chosen in the above examples. In orderid fout
which initial distributions of runs lead to a proganctioning, we work backward, starting with tfieal
distribution (last line in Fig. 2.15). Rewritingethtables of the two examples and rotating eachtrpwne
position with respect to the prior row yields Tab®.13 and 2.14 for six passes and for three axnd si
sequences, respectively.

L al) &) Sumdl)
0 1 0 1

1 1 1 2

2 2 1 3

3 3 2 5

4 5 3 8

5 8 5 13

6 13 8 21

Table 2.13 Perfect distribution of runs on twolsatges.

L al) &b &) al) a(l) Sumgl)
0 1 0 0 0 0 1

1 1 1 1 1 1 5

2 2 2 2 2 1 9

3 4 4 4 3 2 17

4 8 8 7 6 4 33

5 16 15 14 12 8 65

Table 2.14 Perfect distribution of runs on fivesences.
From Table 2.13 we can deduce for L > 0 the retatio

g(L+1) = a(l)
a(L+1) = a(l) +a(l)
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and a(0) =1, a(0) = 0. Defining {1 = a(i), we obtain fori >0
far = f+fq, =1, §=0

These are the recursive rules (or recurrence eadtdefining théibonacci numbers
f=0,1,1,2,3,5,8,13,21, 34,55, ..

Each Fibonacci number is the sum of its two preskms. As a consequence, the numbers of initia am
the two input sequences must be two consecutiveniitti numbers in order to make Polyphase work

properly with three sequences.
How about the second example (Table 2.14) wittssgquences? The formation rules are easily desased

a(L+1) = a(l)

a(L+1) = a(b) +a(l) = a(l) + a(L-1)

a(L+l) = a(b) +a(l) = a(l) + a(L-1) + a(L-2)

&(L+1l) = a(b) + a(l) = a(l) + a(L-1) + a(L-2) + a(L-3)

g(L+1) = a(b) + a(L) = a(l) + a(L-1) + a(L-2) + a(L-3) + a(L-4)

Substituting ffor a(i) yields

fog = fi+fa+f+fs+f, fori>4
f4 =1
fi =0 fori<4

These numbers are thl@bonacci numbers of order.4n general, the Fibonacci nhumbers of order p are
defined as follows:

fiua(p) = {(P) + fa(p) + ... + fi(p) fori>p
fop) =1 )
fip) =0 for O<i<p

Note that the ordinary Fibonacci numbers are todseder 1.

We have now seen that the initial numbers of rons fperfect Polyphase Sort withsequences are the sums
of anyN-1,N-2, ... , 1 (see Table 2.15) consecutive Fibonaggibers of ordeN-2. This apparently implies
that this method is only applicable to inputs whosenber of runs is the sum Nf1 such Fibonacci sums.
The important question thus arises: What is to creedvhen the number of initial runs is not suchdmal
sum? The answer is simple (and typical for sutthatons): we simulate the existence of hypothegaapty
runs, such that the sum of real and hypotheticed isia perfect sum. The empty runs are calledmy runs

But this is not really a satisfactory answer beeailsimmediately raises the further and more diffic
gquestion: How do we recognize dummy runs duringging? Before answering this question we must first
investigate the prior problem of initial run distwtion and decide upon a rule for the distributidractual

and dummy runs onto th¢1 tapes.
2 3 4 5 6 7

1

2 3 5 7 9 11 13

3 5 9 13 17 21 25

4 8 17 25 33 41 49

5 13 31 49 65 81 97

6 21 57 94 129 161 193

7 34 105 181 253 321 385

8 55 193 349 497 636 769
9 89 355 673 977 1261 1531
10 144 653 1297 1921 2501 3049
11 233 1201 2500 3777 4961 6073
12 377 2209 4819 7425 9841 12097
13 610 4063 9289 14597 19521 24097
14 987 7473 17905 28697 38721 48001

Table 2.15 Numbers of runs allowing for perfestrpution.
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In order to find an appropriate rule for distriloumtj however, we must know how actual and dummy eues
merged. Clearly, the selection of a dummy run freequencé means precisely that sequernde ignored
during this merge. resulting in a merge from fett@nN-1 sources. Merging of a dummy run from sl
sources implies no actual merge operation, butaasthe recording of the resulting dummy run orotiput
sequence. From this we conclude that dummy runsidhoe distributed to the-1 sequences as uniformly as
possible, since we are interested in active mergesas many sources as possible.

Let us forget dummy runs for a moment and congtieproblem of distributing an unknown number afsu
onto N-1 sequences. It is plain that the Fibonacci nusileérorderN-2 specifying the desired numbers of
runs on each source can be generated while thébdigin progresses. Assuming, for exampNes 6 and
referring to Table 2.14, we start by distributinms as indicated by the row with index L =1 (1111, 1); if
there are more runs available, we proceed to ttenserow (2, 2, 2, 2, 1); if the source is stilt eahausted,
the distribution proceeds according to the thirdl (d, 4, 4, 3, 2), and so on. We shall call the index
level Evidently, the larger the number of runs, thehbigis the level of Fibonacci numbers which,
incidentally, is equal to the number of merge passeswitchings necessary for the subsequent Ebe.
distribution algorithm can now be formulated iriratfversion as follows:

1. Let the distribution goal be the Fibonacci nurselmd ordemN-2, level 1.

2. Distribute according to the set goal.

3.If the goal is reached, compute the next le¥&lilmonacci numbers; the difference between thedthose
on the former level constitutes the new distributgal. Return to step 2. If the goal cannot behed
because the source is exhausted, terminate thiédisin process.

The rules for calculating the next level of Fibariamumbers are contained in their definition. Wa taus
concentrate our attention on step 2, where, wigfivan goal, the subsequent runs are to be distibane
after the other onto thH-1 output sequences. It is here where the dummg have to reappear in our
considerations.

Let us assume that when raising the level, we tettwr next goal by the differencedat i = 1 ... N-1, where

d; denotes the number of runs to be put onto sequeéndhis step. We can now assume that we immegiatel
put d dummy runs onto sequenicand then regard the subsequent distribution asefilacement of dummy
runs by actual runs, each time recording a replaoérhy subtracting 1 from the count @hus, the d
indicates the number of dummy runs on sequéemdeen the source becomes empty.

It is not known which algorithm yields the optindiktribution, but the following has proved to beery
good method. It is calledorizontal distribution(cf. Knuth, Vol 3. p. 270), a term that can be enstbod by
imagining the runs as being piled up in the fornsitds, as shown in Fig. 2.16 fobf= 6, level 5 (cf. Table
2.14). In order to reach an equal distribution efaining dummy runs as quickly as possible, their
replacement by actual runs reduces the size opiles by picking off dummy runs on horizontal level
proceeding from left to right. In this way, the suare distributed onto the sequences as indicatetdir
numbers as shown in Fig. 2.16.

8
1
7 _____
2 3 4
6 boeobooo b
5 6 7 8
5 ____________________
9 10 11 12
4 ____________________
13 14 15 16 17
3 _________________________
18 19 20 21 22
2 b b
23 24 25 26 27
l _________________________
28 29 30 31 32

Fig. 2.16. Horizontal distribution of runs



We are now in a position to describe the algorithrithe form of a procedure callsglect which is activated
each time a run has been copied and a new souseteited for the next run. We assume the existehae
variablej denoting the index of the current destination eege. aand ¢ denote the ideal and dummy
distribution numbers for sequenice

j, level:  INTEGER;
a,d: ARRAY N OF INTEGER,;

These variables are initialized with the followwagues:

a=1 d=1 fori=0 .. N-2
an-1=0,d1=0 dummy
j=0, level=0

Note thatselectis to compute the next row of Table 2.14, i.ee Walues #L) ... a.1(L) each time that the
level is increased. The next goal, i.e., the déffiees d= g(L) - a(L-1) are also computed at that time. The
indicated algorithm relies on the fact that theulisy d decrease with increasing index (descending stair i
Fig. 2.16). Note that the exception is the traositirom level O to level 1; this algorithm mustréslere be
used starting at level Belectends by decrementing by 1; this operation stands for the replacemerd of
dummy run on sequengdy an actual run.

PROCEDURE select;
VAR i, z: INTEGER,;

BEGIN
IF d[j] < d[j+1] THEN INC())
ELSE

IF d[j] = 0 THEN

INC(level); z := a[0];
FORi:=0TO N-2 DO
d[i] := z + a[i+1] - a[i]; a[i] := # a[i+1]
END
END ;
j=0
END ;
DEC(d[]])
END select

Assuming the availability of a routine to copy a fiom the sourcerc woth rider R ontd; with riderr;, we
can formulate the initial distribution phase asdwk (assuming that the source contains at leastumy:

REPEAT select; copyrun
UNTIL R.eof

Here, however, we must pause for a moment to rekalleffect encountered in distributing runs in the
previously discussed natural merge algorithm: Téet that two runs consecutively arriving at the sam
destination may merge into a single run, causeageemed numbers of runs to be incorrect. By dayitie
sort algorithm such that its correctness does apedd on the number of runs, this side effect efelysbe
ignored. In the Polyphase Sort, however, we aréiquéarly concerned about keeping track of the éxac
number of runs on each file. Consequently, we caafford to overlook the effect of such a coincitién
merge. An additional complication of the distrilmuti algorithm therefore cannot be avoided. It beme
necessary to retain the keys of the last item @fdkt run on each sequence. Fortunately, our mgiéation

of Runsdoes exactly this. In the case of output sequeridist represents the item last written. A next
attempt to describe the distribution algorithm datllerefore be

REPEAT select;
IF f[j].first <= f0.first THEN continue old ruiEND ;
copyrun

UNTIL R.eof
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The obvious mistake here lies in forgetting tifigfirst has only obtained a value after copying the fiust
A correct solution must therefore first distribatee run onto each of ti¢1 destination sequences without
inspection ofirst. The remaining runs are distributed as follows:

WHILE ~R.eof DO
select;
IF r[j].first <= R.first THEN
copyrun;
IF R.eof THEN INC(d]j]) ELSE copyrun END
ELSE copyrun
END
END

Now we are finally in a position to tackle the maiolyphase merge sort algorithm. Its principal cuiee is
similar to the main part of thB-way merge program: An outer loop whose body merges until the
sources are exhausted, an inner loop whose bodyesier single run from each source, and an innermost
loop whose body selects the initial key and tratsttiie involved item to the target file. The privadi
differences to balanced merging are the following:

1.Instead of\, there is only one output sequence in each pass.

2.Instead of switching\ input andN output sequences after each pass, the sequercestated. This is
achieved by using a sequence index map

3.The number of input sequences varies from rurug at the start of each run, it is determinemnfrthe
counts gdof dummy runs. If @> 0 for alli, thenN-1 dummy runs are pseudo-merged into a single dummy
run by merely incrementing the coutif of the output sequence. Otherwise, one run is egefgpm all
sources with g= 0, andd; is decremented for all other sequences, indicdtiajone dummy run was taken
off. We denote the number of input sequences iregbin a merge b

4.1t is impossible to derive termination of a phéry the end-of status of tihkel'st sequence, because more
merges might be necessary involving dummy runs ftieat source. Instead, the theoretically necessary
number of runs is determined from the coefficieqtsThe coefficients jawere computed during the
distribution phase; they can now be recomputedwardk

The main part of the Polyphase Sort can now beutated according to these rules, assuming that-all
sequences with initial runs are set to be readlsaicthe tape map is initially set te-ti.

REPEAT (*merge from t[0] ... t{{N-2] to t[N-1]*)
z := a[N-2]; d[N-1] := 0;
REPEAT k := 0; (*merge one run*)
(*determine no. of active input sequences*)
FORi:=0 TO N-2 DO
IF d[i] > 0 THEN DEC(d[i]) ELSE ta[K] :Hil; INC(k) END
END ;
IF k =0 THEN INC(d[N-1])
ELSEmerge one real run from t[0] ... t[k-1] to t[N-1]
END ;
DEC(z)
UNTIL z=0;
Runs.Set(r[t{N-1]], it{N-1]));
rotate sequences in map t; compute a[i] for nexelg
DEC(level)
UNTIL level =0
(*sorted output is f[t[0]]*)

The actual merge operation is almost identical whtt of theN-way merge sort, the only difference being
that the sequence elimination algorithm is somewtmapler. The rotation of the sequence index mapthe
corresponding count$ (and the down-level recomputation of the coeffitéeg) is straightforward and can
be inspected in detail from Program 2.16, whichiesents th€olyphasealgorithm in its entirety.
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PROCEDURE Polyphase(src: Files.File): Files.File;
VAR, j, mx, tn: INTEGER;
k, dn, z, level: INTEGER,;
X, min: INTEGER,;
a, d: ARRAY N OF INTEGER;
t, ta: ARRAY N OF INTEGER; (*index maps*)
R: Runs.Rider; (*source*)
f: ARRAY N OF Files.File;
r: ARRAY N OF Runs.Rider;

PROCEDURE select;
VAR, z: INTEGER,;
BEGIN
IF d[j] < d[j+1] THEN INC(j)
ELSE
IF d[j] =0 THEN
INC(level); z := a[0];
FORi:=0TO N-2 DO
d[i] := z + a[i+1] - a[i]; a[i] := z + a[i+1]
END
END ;
j:=0
END ;
DEC(d[j])
END select;

PROCEDURE copyrun; (*from src to f[j]*)
BEGIN

REPEAT Runs.copy(R, r[j]) UNTIL R.eor
END copyrun;

BEGIN Runs.Set(R, src);
FORi:=0TO N-2 DO
ali] =1, d[i] := 1, f[i] := Files.New("); Files.Set(r[i], f[i], 0)
END ;
(*distribute initial runs*)
level :=1;j:=0; a[N-1] := 0; d[N-1] := 0;
REPEAT select; copyrun UNTIL R.eof OR (j = N-2);
WHILE ~R.eof DO
select; (*r[j].first = last item written on f[j)
IF r[j].first <= R.first THEN
copyrun;
IF R.eof THEN INC(d[j]) ELSE copyrun END
ELSE copyrun
END
END ;

FORi:=0 TO N-2 DO {[i] :=i; Runs.Set(r[i], i END ;
t[N-1] := N-1;
REPEAT (*merge from t[0] ... t{N-2] to {[N-1]*)
z .= a[N-2]; d[N-1] := 0;
fIt{N-1]] := Files.New(""); Files.Set(r[t{N-1]]f{t{{N-1]], 0);
REPEAT k := 0; (*merge one run*)
FORi:=0TO N-2 DO
IF d[i] > 0 THEN DEC(dI[i]) ELSE talk] := t[i]iNC(k) END
END ;
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IF k =0 THEN INC(d[N-1])
ELSE (*merge one real run from t[0] ... t[k-D]tfN-1]*)
REPEAT mx := 0; min := r[ta[O]].first; i := 1;
WHILE i<k DO
X = r[ta[i]].first;
IF x < min THEN min := x; mx := i END ;
INC(i)
END ;
Runs.copy(r[ta[mx]], r[tIN-11]);
IF r[ta[mx]].eor THEN ta[mx] := talk-1]; DECJKEND
UNTILk =0
END ;
DEC(2)
UNTIL z =0;
Runs.Set(r[t[N-1]], fit[N-1]]); (*rotate sequens*)
tn ;= t[N-1]; dn := d[N-1]; z := a[N-2];
FORi:=N-1TO 1BY -1 DO
tli] = t[i-1]; d[i] := d[i-1]; a[i] := a[i-1] - z

END ;
t[0] := tn; d[0] := dn; a[0] := z; DEC(level)
UNTIL level =0 ;

RETURN f{t[0]]
END Polyphase

2.4.5. Distribution of Initial Runs

We were led to the sophisticated sequential sopiragrams, because the simpler methods operating on
arrays rely on the availability of a random accasse sufficiently large to hold the entire setdafa to be
sorted. Often such a store is unavailable; insteafficiently large sequential storage devices agkapes or
disks must be used. We know that the sequentidingomethods developed so far need practically no
primary store whatsoever, except for the file Insffend, of course, the program itself. Howeveis & fact

that even small computers include a random acpessary store that is almost always larger thantwha
needed by the programs developed here. Failingatceraptimal use of it cannot be justified.

The solution lies in combining array and sequeioctng techniques. In particular, an adapted asmaymay

be used in the distribution phase of initial runthvthe effect that these runs do already havengtteL of
approximately the size of the available primaryadstore. It is plain that in the subsequent meags¢s no
additional array sorts could improve the perforneabecause the runs involved are steadily growing in
length, and thus they always remain larger thanatrelable main store. As a result, we may fortelyat
concentrate our attention on improving the alganithat generates initial runs.

Naturally, we immediately concentrate our searchttoa logarithmic array sorting methods. The most
suitable of them is the tree sortldeapsortmethod (see Sect. 2.2.5). The heap may be regasdadunnel
through which all items must pass, some quickersamde more slowly. The least key is readily pickéd
the top of the heap, and its replacement is a &ffigient process. The action of funnelling a comgiat from
the input sequencsrc (rider r0) through a full heapl onto an output sequendest (rider rl) may be
described simply as follows:

Write(r1, H[0]); Read(r0, H[Q]); sift(0, n-1)

Sift is the process described in Sect. 2.2.5 for giftire newly inserted compondrg down into its proper
place. Note thaltl, is the least item on the heap. An example is shiowsig. 2.17. The program eventually
becomes considerably more complex for the follow&gsons:

1. The hea is initially empty and must first be filled.
2. Toward the end, the heap is only partially dijland it ultimately becomes empty.
3.We must keep track of the beginning of new tinrder to change the output indeat the right time.
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Fig. 2.17. Sifting a key through a heap
Before proceeding, let us formally declare thealalgs that are evidently involved in the process:

VAR L, R, x: INTEGER;
src, dest: Files.File;
r, w: Files.Rider;
H: ARRAY M OF INTEGER; (*heap*)

M is the size of the hedp. We use the constanthto denoteM/2; L and R are indices delimiting the heap.
The funnelling process can then be divided inte fiistinct parts.

1.Read the firstnh keys from src (r) and put them into the upper bélhe heap where no ordering among
the keys is prescribed.

2.Read anothanh keys and put them into the lower half of the hesfbing each item into its appropriate
position (build heap).

3.SetL to M and repeat the following step for all remainingis onsrc. FeedH, to the appropriate output
sequence. If its key is less or equal to the kethefnext item on the input sequence, then this ibex
belongs to the same run and can be sifted intpriper position. Otherwise, reduce the size ofttbap
and place the new item into a second, upper hedpgibuilt up to contain the next run. We indictite
borderline between the two heaps with the indeXhus, the lower (current) heap consists of tem#t H
... H.-1, the upper (next) heap of H. Hy.1. If L = 0, then switch the output and relseb M.

4.Now the source is exhausted. First,&h M; then flush the lower part terminating the curnemt, and at
the same time build up the upper part and graduelbgate it into positions H.. Hg.1.

5.The last run is generated from the remainingsten the heap.

We are now in a position to describe the five staigedetail as a complete program, calling a proced
switchwhenever the end of a run is detected and sonmndotalter the index of the output sequence bas t
be invoked. In Program 2.17 a dummy routine is usstdad, and all runs are written onto sequelest

If we now try to integrate this program with, foistancePolyphase Sortve encounter a serious difficulty. It
arises from the following circumstances: The godgram consists in its initial part of a fairlyroplicated
routine for switching between sequence variabled, ralies on the availability of a procedwapyrunthat
delivers exactly one run to the selected destinafitlne Heapsortprogram, on the other hand, is a complex
routine relying on the availability of a closed pedureselectwhich simply selects a new destination. There



would be no problem, if in one (or both) of the gmams the required procedure would be called &gies
place only; but instead, they are called at seydagles in both programs.

This situation is best reflected by the use obeoutine(thread); it is suitable in those cases in whiehesal
processes coexist. The most typical representetittee combination of a process that produceseastrof
information in distinct entities and a process t@mtsumes this stream. This producer-consumeicesip
can be expressed in terms of two coroutines; orteesfi may well be the main program itself. The atine
may be considered as a process that contains omerer breakpoints. If such a breakpoint is encaedte
then control returns to the program that had attv#he coroutine. Whenever the coroutine is callgalin,
execution is resumed at that breakpoint. In oumgte, we might considePolyphase Soras the main
program, calling uporopyrun which is formulated as a coroutine. It considtthe main body of Program
2.17 in which each call gfwitchnow represents a breakpoint. The testefod of filewould then have to be
replaced systematically by a test of whether ortm@tcoroutine had reached its endpoint.

PROCEDURE Distribute(src: Files.File): Files.File;
CONST M =16; mh =M DIV 2; (*heap size*)
VAR L, R: INTEGER;

X: INTEGER,;

dest: Files.File;

r, w: Files.Rider;

H: ARRAY M OF INTEGER; (*heap*)

PROCEDURE sift(L, R: INTEGER);
VAR |, j, x: INTEGER,;
BEGIN i:=L;j:= 2*L+1; x := HI[i];
IF (j < R) & (H[j] > H[j+1]) THEN INC(j) END ;
WHILE (j <= R) & (x > HJ[j]) DO
HI] == H[j]; i := J; j := 2%j+1;
IF (j < R) & (HI[j] > H[j+1]) THEN INC(j) END
END ;
H[i] := x
END sift;

BEGIN Files.Set(r, src, 0); dest .= Files.New('Fjtes.Set(w, dest, 0);
(*step 1: fill upper half of heap*)
REPEAT DEC(L); Files.ReadInt(r, H[L]) UNTIL L = mh
(*step 2: fill lower half of heap*)
REPEAT DEC(L); Files.ReadInt(r, H[L]); sift(L, MJIUNTIL L = 0;
(*step 3: pass elements through heap*)
L := M; Files.ReadInt(r, x);
WHILE ~r.eof DO
Files.Writelnt(w, H[0]);
IF H[0] <= x THEN
(*x belongs to same run*) H[0] := x; sift(0, -1
ELSE (*start next run*)
DEC(L); H[O] := HIL]; sift(0, L-1); H[L] := x;
IF L < mh THEN sift(L, M-1) END ;
IF L=0 THEN (*heap full; start new run*) L ¥ END
END ;
Files.ReadInt(r, x)
END ;
(*step 4: flush lower half of heap*)
R:=M,;
REPEAT DEC(L); Files.Writelnt(w, H[0]);
H[O] := HIL]; sift(0, L-1); DEC(R); H[L] := H[R];
IF L < mh THEN sift(L, R-1) END
UNTILL = 0;
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(*step 5: flush upper half of heap, start new run*)
WHILE R >0 DO
Files.WriteInt(w, H[0]); H[0] := H[R]; DEC(R); $i(0, R)
END ;
RETURN dest
END Distribute

Analysis and conclusiondihat performance can be expected froRolyphase Sonwith initial distribution
of runs by aHeapsor? We first discuss the improvement to be expdayeidtroducing the heap.

In a sequence with randomly distributed keys theeeted average length of runs is 2. What is tmigtle
after the sequence has been funnelled throughmdfesizem ? One is inclined to saw, but, fortunately,
the actual result of probabilistic analysis is mbeltter, namel2m (see Knuth, vol. 3, p. 254). Therefore, the
expected improvement factorris

An estimate of the performance of Polyphase camgdtbered from Table 2.15, indicating the maximal
number of initial runs that can be sorted in a gimamber of partial passes (levels) with a giveminerN of
sequences. As an example, with six sequences &edpof sizen = 100, a file with up to 165’680’1200
initial runs can be sorted within 10 partial pas3éss is a remarkable performance.

Reviewing again the combination Bblyphase Sorand Heapsort one cannot help but be amazed at the
complexity of this program. After all, it perforntise same easily defined task of permuting a séeofs as

is done by any of the short programs based ontth&lst array sorting principles. The moral of trtire
chapter may be taken as an exhibition of the faligw

1. The intimate connection between algorithm andedrying data structure, and in particular theuiafice of
the latter on the former.

2.The sophistication by which the performance gfragram can be improved, even when the available
structure for its data (sequence instead of aisagther ill-suited for the task.

Exercises

2.1. Which of the algorithms given for straightdrson, binary insertion, straight selection, bbbbrt,
shakersort, shellsort, heapsort, quicksort, araigétt mergesort are stable sorting methods?

2.2.  Would the algorithm for binary insertion stitbrk correctly if L < R were replaced by L < R time
while clause? Would it still be correct if thetstment L := m+1 were simplified to L := m? If not,
find sets of values al ... an upon which the akt@r@gram would fail.

2.3. Program and measure the execution time aothtfee straight sorting methods on your computet, an
find coefficients by which the factors C and M hawde multiplied to yield real time estimates.

2.4. Specifty invariants for the repetitions in theee straight sorting algorithms.

2.5. Consider the following "obvious" version o&tprocedure Partition and find sets of valugs.a 1
for which this version fails:

i:=0;j:=n-1;,x:=a[n DIV 2];
REPEAT

WHILE afi] <x DO i:=i+1 END;

WHILE x < a[j] DO j:=j-1 END;

w = a[i]; afi] := a[j]; afj] :==w
UNTIL i > |

2.6. Write a procedure that combines the Quickaod Bubblesort algorithms as follows: Use Quicksort

to obtain (unsorted) partitions of length m (1 <m); then use Bubblesort to complete the taskeNot
that the latter may sweep over the entire arrap @lements, hence, minimizing the bookkeeping
effort. Find that value of m which minimizes theatosort time. Note: Clearly, the optimum value of
m will be quite small. It may therefore pay to tbe Bubblesort sweep exactly m-1 times over the
array instead of including a last pass establistiiegact that no further exchange is necessary.



2.7. Perform the same experiment as in Exercisev2tba straight selection sort instead of a Bubbie
Naturally, the selection sort cannot sweep oventhele array; therefore, the expected amount of
index handling is somewhat greater.

2.8. Write a recursive Quicksort algorithm accogdin the recipe that the sorting of the shortetitiam
should be tackled before the sorting of the lorggtition. Perform the former task by an iterative
statement, the latter by a recursive call. (Heyoey sort procedure will contain only one recursive
call instead of two.

2.9. Find a permutation of the keys 1, 2, ... pmvfhich Quicksort displays its worst (best) bebayn =
5,6, 8).

2.10. Construct a natural merge program similah#straight merge, operating on a double lengtayar
from both ends inward; compare its performance i of the procedure given in this text.

2.11. Note that in a (two-way) natural merge wendb blindly select the least value among the abéila
keys. Instead, upon encountering the end of athentail of the other run is simply copied onto the
output sequence. For example, merging of

2,4,5 1, 2,..
3,6,8,9 7, ..

results in the sequence
2,3,4,5,6,8,91, 2, ..
instead of
2,3,4,5,1,2,6,8,09, ..
which seems to be better ordered. What is the nefasdhis strategy?

2.12. A sorting method similar to the Polyphasthésso-called Cascade merge sort [2.1 and 2.93el$ a
different merge pattern. Given, for instance, sguences T1, ... ,T6, the cascade merge, alsingtart
with a "perfect distribution” of runs on T1 ... Tperforms a five-way merge from T1 ... T5 onto T6
until T5 is empty, then (without involving T6) aubway merge onto T5, then a three-way merge
onto T4, a two-way merge onto T3, and finally aaperation from T1 onto T2. The next pass
operates in the same way starting with a five-wayga to T1, and so on. Although this scheme
seems to be inferior to Polyphase because at titnelsooses to leave some sequences idle, and
because it involves simple copy operations, it gsirmgly is superior to Polyphase for (very) large
files and for six or more sequences. Write a welicsured program for the Cascade merge principle.
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3 Recursive Algorithms

3.1. Introduction

An object is said to be recursive, if it partiaipnsists or is defined in terms of itself. Recursie
encountered not only in mathematics, but also ity dife. Who has never seen an advertising picture
which contains itself?

Recursion is a particularly powerful technique iathematical definitions. A few familiar exampleg ar
those of natural numbers, tree structures, anémtdio functions:

1. Natural numbers:
(a) 0 is a natural number.
(b) the successor of a natural number is a natwraber.

2. Tree structures
(a) O is a tree (called the empty tree).
(b) If t1 and t2 are trees, then the structuressisting of a node with two descendants t1 and t2 is
also a (binary) tree.

3. The factorial function f(n):
f0)=1
fnN)=nxf(n-1) forn>0

The power of recursion evidently lies in the po#isjbof defining an infinite set of objects by @ite
statement. In the same manner, an infinite numbeormputations can be described by a finite reversi
program, even if this program contains no explieipetitions. Recursive algorithms, however, are
primarily appropriate when the problem to be so)ved the function to be computed, or the data
structure to be processed are already definectursive terms. In general, a recursive programrPoea
expressed as a compositiBof a sequence of statements S (not containingdPPatself.

P = P[S, P]

The necessary and sufficient tool for expressirag@ms recursively is the procedure or subroufore,

it allows a statement to be given a name by whigh $tatement may be invoked. If a procedure P
contains an explicit reference to itself, thersisaid to belirectly recursiveif P contains a reference to
another procedure Q, which contains a (direct diréat) reference to P, then P is said tarzirectly
recursive The use of recursion may therefore not be imntelyiapparent from the program text.

It is common to associate a set of local objecth wiprocedure, i.e., a set of variables, constéypss,
and procedures which are defined locally to th@pdure and have no existence or meaning outsile th
procedure. Each time such a procedure is activaedrsively, a new set of local, bound variables is
created. Although they have the same names as dbeiesponding elements in the set local to the
previous instance of the procedure, their valuegi@tinct, and any conflict in naming is avoidsedtbe
rules of scope of identifiers: the identifiers ajwaefer to the most recently created set of vietatlhe
same rule holds for procedure parameters, whideffigition are bound to the procedure.

Like repetitive statements, recursive proceduresodiuice the possibility of non- terminating
computations, and thereby also the necessity dfidering the problem of termination. A fundamental
requirement is evidently that the recursive call® @re subjected to a condition B, which at soime t
becomes false. The scheme for recursive algorithastherefore be expressed more precisely by either
one of the following forms:

P = IFB THENPI[S, P] END
P = P[S, IF B THEN P END]

For repetitions, the basic technique of demonsgatrmination consists of

1.defining a function f(x) (x shall be the setwariables), such that f(x) < O implies the termingt
condition (of the while or repeat clause), and
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2. proving that f(x) decreases during each repetiiepf is called thevariant of the repetition.

In the same manner, termination of a recursion mmroved by showing that each execution of P
decreases some f(x), and that f(x) < O implies ABarticularly evident way to ensure terminationds
associate a (value) parameter, say n, with P, anedursively call P with n-1 as parameter value.
Substituting n > 0 for B then guarantees termimatithis may be expressed by the following program
schemata:

P(n) = IF n >0 THENP[S, P(n-1)] END
P(n) = P[S, IF n >0 THEN P(n-1) END]

In practical applications it is mandatory to shdwattthe ultimate depth of recursion is not onlyténbut
that it is actually quite small. The reason is thpbn each recursive activation of a procedurerReso
amount of storage is required to accommodate it@has. In addition to these local variables, the
current state of the computation must be recordemtder to be retrievable when the new activatibR o

is terminated and the old one has to be resumedh&Ve already encountered this situation in the
development of the procedu€uicksortin Chap. 2. It was discovered that by naively cosipg the
program out of a statement that splits the n itenastwo partitions and of two recursive calls saytthe
two partitions, the depth of recursion may in therst case approach n. By a clever reassessmeme of t
situation, it was possible to limit the depth tg(l®). The difference between n and log(n) is sigfitto
convert a case highly inappropriate for recursigo one in which recursion is perfectly practical.

3.2. When Not To Use Recursion

Recursive algorithms are particularly appropriateewthe underlying problem or the data to be teate
are defined in recursive terms. This does not meawgever, that such recursive definitions guarantee
that a recursive algorithm is the best way to stiveproblem. In fact, the explanation of the cqha
recursive algorithm by such inappropriate examplas been a chief cause of creating widespread
apprehension and antipathy toward the use of riecuis programming, and of equating recursion with
inefficiency.

Programs in which the use of algorithmic recurs®to be avoided can be characterized by a schema
which exhibits the pattern of their composition.eThquivalent schemata are shown below. Their
characteristic is that there is only a single c&lP either at the end (or the beginning) of theposition.

P = IFBTHEN S; P END
P = S;IFBTHEN P END

These schemata are natural in those cases in walighs are to be computed that are defined in tefms
simple recurrence relations. Let us look at thd-kmbwn example of the factorial numbersfi! :

i=0123,4,5,..
fi=1,1,2,6, 24,120, ...

The first number is explicitly defined ag= 1, whereas the subsequent numbers are deficaetsieely
in terms of their predecessor:

fiy = (1) *

This recurrence relation suggests a recursive ighgorto compute the n th factorial number. If we
introduce the two variables | and F to denote thleas i and;fat the i th level of recursion, we find the
computation necessary to proceed to the next nigibéhe sequences (3.8) to be

I=1+1, F=1*F

and, substituting these two statements for S, vi@mkhe recursive program
P=IFI<nTHENI:=1+1;F:=1*F; P END
I=0;F=1; P

The first line is expressed in terms of our coniggratl programming notation as
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PROCEDURE P;

BEGIN
IFI<nTHENI:=1+1;F:=I*F, P END

END P

A more frequently used, but essentially equivaldotm is the one given below. P is replaced by a
function procedure F, i.e., a procedure with whackesulting value is explicitly associated, and alihi
therefore may be used directly as a constituenexgiressions. The variable F therefore becomes
superfluous; and the role of | is taken over byekglicit procedure parameter.

PROCEDURE F(I: INTEGER): INTEGER,;
BEGIN

IF1>0THEN RETURN I * F(l - 1) ELSE RETURNEND
END F

It now is plain that in this example recursion tenreplaced quite simply by iteration. This is egzed
by the program

1:=0; F:=1,
WHILE I<nDOI:=1+1,F:=PFEND

In general, programs corresponding to the origichlemata should be transcribed into one according t
the following schema:

P = [x:=x0; WHILE B DO S END]

There also exist more complicated recursive conipassichemes that can and should be translated into
an iterative form. An example is the computationtte Fibonacci numbers which are defined by the
recurrence relation

fibge, = fib, + fib,y forn>0
and fib = 1, fiby = 0. A direct, naive transcription leads to theumsive program

PROCEDURE Fib(n: INTEGER): INTEGER;
BEGIN

IF n =0 THEN RETURN 0

ELSIF n =1 THEN RETURN 1

ELSE RETURN Fib(n-1) + Fib(n-2)

END
END Fib

Computation of fii by a call Fib(n) causes this function procedurdé¢oactivated recursively. How
often? We notice that each call with n > 1 lead ffurther calls, i.e., the total number of calews
exponentially (see Fig. 3.2). Such a program iarbjampractical.

But fortunately the Fibonacci numbers can be coeguby an iterative scheme that avoids the
recomputation of the same values by use of auyiliariables such that x = filand y = fil;.
i=1,x=1,y:=0;
WHILEi<nDOz:=x; x:=x+Vy; y:=z; i #+1 END
Note: The assignments to X, y, z may be expresgetivd assignments only without a need for the
auxiliary variable z: x:=x+y;, y:=x-y.
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Fig. 3.2. The 15 activations of Fib(5)

Thus, the lesson to be drawn is to avoid the useedafirsion when there is an obvious solution by
iteration. This, however, should not lead to shyawgay from recursion at any price. There are many
good applications of recursion, as the followingggaaphs and chapters will demonstrate. The fadt th
implementions of recursive procedures on essentiain-recursive machines exist proves that for
practical purposes every recursive program camndmsformed into a purely iterative one. This, hogrev
involves the explicit handling of a recursion staakd these operations will often obscure the esseh

a program to such an extent that it becomes méfatulti to comprehend. The lesson is that algorghm
which by their nature are recursive rather tharaiiee should be formulated as recursive procedudines
order to appreciate this point, the reader is referto the algorithms forQuickSort and
NonRecursiveQuicksoirt Sect. 2.3.3 for a comparison.

The remaining part of this chapter is devoted te tlevelopment of some recursive programs in
situations in which recursion is justifiably appriae. Also Chap. 4 makes extensive use of reauiigio
cases in which the underlying data structureshletchoice of recursive solutions appear obvious and
natural.

3.3. Two Examples of Recursive Programs

The attractive graphic pattern shown in Fig. 3.Bststs of the superposition of five curves. Thasees
follow a regular pattern and suggest that they triighdrawn by a display or a plotter under cortifcd
computer. Our goal is to discover the recursiorest according to which the drawing program might

be constructed. Inspection reveals that three ektiperimposed curves have the shapes shown in Fig.

3.3; we denote them by;HH,, and H. The figures show that;H is obtained by the composition of four
instances of Hof half size and appropriate rotation, and bygyiogether the four Hby three connecting
lines. Notice that imay be considered as consisting of four instantas empty i connected by three
straight lines. His called theHilbert curve of order i after its inventor, the mathematician Hilbert
(1891).

Hl Hz H3

Fig. 3.3. Hilbert curves of order 1, 2, and 3

Since each curve;ldonsists of four half-sized copies ofiHwe express the procedure for drawingsi
a composition of four calls for drawing;Hin half size and appropriate rotation. For theppse of
illustration we denote the four parts by A, B, @dd, and the routines drawing the interconnedtimes

90



by arrows pointing in the corresponding directidihen the following recursion scheme emerges (see
Fig. 3.3).

A D<A| A-B
B C 1B -B | A
C: B -C1 C«<D
D: Al D<DT?TtC

Let us assume that for drawing line segments we fadwur disposal a procedure line which moves a
drawing pen in a given direction by a given dis&arieor our convenience, we assume that the directio
be indicated by an integer parameter i as 45xiabegf the length of the unit line is denoted byhe
procedure corresponding to the scheme A is reaghlgressed by using recursive activations of
analogously designed procedures B and D and dff itse

PROCEDURE A(i: INTEGER);
BEGIN
IFi>0THEN
D(i-1); line(4, u);
A(i-1); line(6, u);
A(i-1); line(0, u);
B(i-1)
END
END A

This procedure is initiated by the main programeofar every Hilbert curve to be superimposed. The
main procedure determines the initial point ofthieve, i.e., the initial coordinates of the penated by

Px and Py, and the unit increment u. The squavéhich the curves are drawn is placed into the neiddl
of the page with given width and height. These patars as well as the drawing procediime are
taken from a modul®raw. Note that this module retains the current pasitid the pen. Procedure
Hilbert draws the n Hilbert curves;H. H,.

DEFINITION Draw;
CONST width = 1024; height = 800;
PROCEDURE Clear; (*clear drawing plane*)
PROCEDURE SetPen(x, y: INTEGER);
PROCEDURE line(dir, len: INTEGER);
(*draw line of length len in direction of dirs4degrees; move pen accordingly*)
END Draw.

Procedure Hilbert uses the four auxiliary procedueB, C, and D recursively:

PROCEDURE A(i: INTEGER);
BEGIN
IFi>0THEN
D(i-1); Draw.line(4,u); A(i-1); Draw.line(6)uA(i-1); Draw.line(0,u); B(i-1)
END
END A;

PROCEDURE B(i: INTEGER);
BEGIN
IFi>0THEN
C(i-1); Draw.line(2,u); B(i-1); Draw.line(QuB(i-1); Draw.line(6,u); A(i-1)
END
END B;

PROCEDURE C(i: INTEGER);
BEGIN
IFi>0THEN
B(i-1); Draw.line(0,u); C(i-1); Draw.line(2uC(i-1); Draw.line(4,u); D(i-1)
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END
END C;

PROCEDURE D(i: INTEGER);
BEGIN
IFi>0THEN
A(i-1); Draw.line(6,u); D(i-1); Draw.line(4)uD(i-1); Draw.line(2,u); C(i-1)
END
END D;

PROCEDURE Hilbert(n: INTEGER);
CONST SquareSize = 512;
VAR i, X0, y0, u: INTEGER;
BEGIN Draw.Clear;
X0 := Draw.width DIV 2; yO := Draw.height DIV 2;
u := SquareSize; i = 0;
REPEAT INC(i); u := u DIV 2;
X0 :=x0 + (uDIV 2); y0 := yO + (u DIV 2); DvaSet(x0, y0); A(i)
UNTILi=n
END Hilbert.

Fig. 3.5. Hilbert curves H... Hg

A similar but slightly more complex and aestheticahore sophisticated example is shown in Fig. 3.7.
This pattern is again obtained by superimposingséeurves, two of which are shown in Fig. 3.6sS
called theSierpinski curveof order i. What is its recursion scheme? Onerspted to single out the leaf
S, as a basic building block, possibly with one etife off. But this does not lead to a solution. The
principal difference between Sierpinski curves &fidbert curves is that Sierpinski curves are closed
(without crossovers). This implies that the basicursion scheme must be an open curve and that the
four parts are connected by links not belonginthrecusion pattern itself. Indeed, these linkssisi

of the four straight lines in the outermost fourras, drawn with thicker lines in Fig. 3.6. Thegyrbe
regarded as belonging to a non-empty initial clyevhich is a square standing on one corner. Now the
recursion schema is readily established. The foustituent patterns are again denoted by A, Bn@, a
D, and the connecting lines are drawn explicithotibe that the four recursion patterns are indeed
identical except for 90 degree rotations.

Sl SZ

Fig. 3.6. Sierpinski curves &nd $
The base pattern of the Sierpinski curves is



93

S: AN B KCRKDZ

and the recursion patterns are (horizontal andcaterrows denote lines of double length.)

A ANB _D7AA
BB By C |ANB
CC CRD<BK C

DD DAA 1 CKD

If we use the same primitives for drawing as inHibert curve example, the above recursion schisme
transformed without difficulties into a (directin@ indirectly) recursive algorithm.

PROCEDURE A(k: INTEGER);
BEGIN
IF k >0 THEN
A(k-1); line(7, h); B(k-1); line(0, 2*h);
D(k-1); line(1, h); A(k-1)
END
END A

This procedure is derived from the first line oétrecursion scheme. Procedures corresponding to the
patterns B, C, and D are derived analogously. Thé rprogram is composed according to the base
pattern. Its task is to set the initial values tloe drawing coordinates and to determine the umé |
length h according to the size of the plane. Thalteof executing this program with n = 4 is shown

Fig. 3.7.

The elegance of the use of recursion in these egargpobvious and convincing. The correctnessef th
programs can readily be deduced from their strecamd composition patterns. Moreover, the use of an
explicit (decreasing) level parameter guaranteesit@tion since the depth of recursion cannot becom
greater than n. In contrast to this recursive fdation, equivalent programs that avoid the explisi¢é of
recursion are extremely cumbersome and obscurénglty understand the programs shown in [3-3]
should easily convince the reader of this.

PROCEDURE A(k: INTEGER);
BEGIN
IFk >0 THEN
A(k-1); Draw.line(7, h); B(k-1); Draw.line(@*h); D(k-1); Draw.line(1, h); A(k-1)
END
END A;

PROCEDURE B(k: INTEGER);
BEGIN
IFk >0 THEN
B(k-1); Draw.line(5, h); C(k-1); Draw.line(@*h); A(k-1); Draw.line(7, h); B(k-1)
END
END B;

PROCEDURE C(k: INTEGER);
BEGIN
IFk >0 THEN
C(k-1); Draw.line(3, h); D(k-1); Draw.line(2*h); B(k-1); Draw.line(5, h); C(k-1)
END
END C;

PROCEDURE D(k: INTEGER);
BEGIN
IFk >0 THEN
D(k-1); Draw.line(1, h); A(k-1); Draw.line(2*h); C(k-1); Draw.line(3, h); D(k-1)
END
END D;



PROCEDURE Sierpinski(n: INTEGER);
CONST SquareSize = 512;

VAR i, h, X0, yO:INTEGER;

BEGIN Draw.Clear; i := 0; h := SquareSize DIV 4;
X0 := width DIV 2; y0 := height DIV 2 + h;
REPEAT INC(i); x0 := x0-h;

h:=h DIV 2; y0 := yO+h; Draw.Set(x0, y0);
A(i); Draw.line(7,h); B(i); Draw.line(5,h);
C(i); Draw.line(3,h); D(i); Draw.line(1,h)
UNTILi=n
END Sierpinski.

Fig. 3.7. Sierpinski curves;S.. §

34. Backtracking Algorithms

A particularly intriguing programming endeavor lie tsubject of so-called general problem solvinge Th
task is to determine algorithms for finding solasao specific problems not by following a fixederof
computation, but by trial and error. The commorigratis to decompose the trial-and-error process o
partial tasks. Often these tasks are most natuedpressed in recursive terms and consist of the
exploration of a finite number of subtasks. We rgagerally view the entire process as a trial orctea
process that gradually builds up and scans (prum&®e of subtasks. In many problems this seaeeh t
grows very rapidly, often exponentially, dependimy a given parameter. The search effort increases
accordingly. Frequently, the search tree can beqarby the use of heuristics only, thereby reducing
computation to tolerable bounds.

It is not our aim to discuss general heuristic sutethis text. Rather, the general principle afdking up
such problem-solving tasks into subtasks and thpicapion of recursion is to be the subject of this
chapter. We start out by demonstrating the undeglyechnique by using an example, namely, the well
knownknight's tour

Given is a nxn board with’riields. A knight -- being allowed to move accomlito the rules of chess --
is placed on the field with initial coordinates x@. The problem is to find a covering of the emtir
board, if there exists one, i.e. to compute a afur-1 moves such that every field of the board isteibi
exactly once.

The obvious way to reduce the problem of coveriAdfiglds is to consider the problem of either
performing a next move or finding out that non@dssible. Let us therefore define an algorithmngyi
to perform a next move. A first approach is théofeing:.

PROCEDURE TryNextMove;
BEGIN initialize selection of moves;
REPEAT select next candidate from list of nextves;
IF acceptable THEN
record move;
IF board not full THEN
TryNextMove,;
IF not successful THEN erase previaeerding END
END
END
UNTIL (move was successful) OR (ho more candislat
END TryNextMove

If we wish to be more precise in describing thggoaithm, we are forced to make some decisions tam da
representation. An obvious step is to represenbtized by a matrix, say h. Let us also introducgpa
to denote index values:
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VAR h: ARRAY n, n OF INTEGER

The decision to represent each field of the boardah integer instead of a Boolean value denoting
occupation is because we wish to keep track ofhiséory of successive board occupations. The
following convention is an obvious choice:

h[x, y] = 0: field <x, y> has not been visited
hix,y] =i: field <x, y> has been visited in théhimove (0<i < rf)

The next decision concerns the choice of apprapigatrameters. They are to determine the starting
conditions for the next move and also to reporitersuccess. The former task is adequately solyed b
specifying the coordinates x,y from which the mi/& be made, and by specifying the number i ef th
move (for recording purposes). The latter task iregLa Boolean result parameter with the meatiieg
move was successful.

Which statements can now be refined on the basisesfe decisions? Certairthpard not fullcan be
expressed as i <nMoreover, if we introduce two local variablesndar to stand for the coordinates of
possible move destinations determined accordinghéojump pattern of knights, then the predicate
acceptable can be expressed as the logical coignnat the conditions that the new field lies or th
board, i.e. xu < nand G v <n, and that it had not been visited previouisty, h,= 0.

The operation of recording the legal move is exggdsdy the assignment huv := i, and the cancetlatio
of this recording as ;= 0. If a local variable gl is introduced anddises the result parameter in the
recursive call of this algorithm, then g1 may bbstituted fomove was successfllhereby we arrive at
the following formulation:

PROCEDURE Try(i: INTEGER,; x, y: index; VAR q: BOOIMH);
VAR u, v: INTEGER; q1: BOOLEAN;
BEGIN initialize selection of moves;
REPEAT let <u,v> be the coordinates of the meave
as defined by the rules of chess;
IF(O<=u)& (u<n)&(0<=V)&(v<n)&hluyv]=0) THEN
hlu,v] :=;
IF i <n*n THEN Try(i+1, u, v, q1);
IF ~q1 THEN h[u,v] := 0 ELSE g1 := TRUEND
END
END
UNTIL g1 OR no more candidates;
q:=ql
END Try
Just one more refinement step will lead us to agm@m expressed fully in terms of our basic
programming notation. We should note that so farpgtogram was developed completely independently
of the laws governing the jumps of the knight. Tthedaying of considerations of particularities loét
problem was quite deliberate. But now is the tim&ake them into account.

Given a starting coordinate pair x,y there are tefgitential candidates u,v of the destination. Taey
numbered 1 to 8 in Fig. 3.8. A simple method ofagtihg u,v from X,y is by addition of the coordieat
differences stored in either an array of differepa&s or in two arrays of single differences. tletse
arrays be denoted by dx and dy, appropriatelyaiigtd. Then an index k may be used to nhumber the
next candidateThe details are shown in Program 3.3. The regeiggiocedure is initiated by a call with
the coordinates x0, y0 of that field as parametera which the tour is to start. This field mustdieen

the value 1; all others are to be marked free.

dx = (2,1,-1,-2,-2,-1,1, 2)
dy = (1,2,2,1,-1,-2, 2, -1)

h[x0, y0] := 1; try(2, x0, Y0, q)
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X
Fig. 3.8. The 8 possible moves of a knight

One further detail must not be overlooked: A \algah,, does exist only if both u and v lie within the
index range O ... n-1. Consequently, the Boolegression, substituted facceptablein the general
schema, is valid only if its first four constitugetms are true. It is therefore relevant thattéme h,, =

0 appears last. We assume a global nxn matrix tesepting the result, the constant n (and nsgi),= n
and arrays dx and dy representig the possible mafve&night (see Fig. 3.8):

PROCEDURE Try(i, X, y: INTEGER; VAR q: BOOLEAN);

VAR K, u, v: INTEGER; q1: BOOLEAN;

BEGIN k :=0;

REPEAT k := k+1; q1 := FALSE;
u:=x+dx[k]; v :=y+ dyK];
IFO<=u)&U<n)& (O <=v)&(v<nk(h[uv]=0) THEN

hluv] =1i;
IF i< Nsgr THEN Try(i+1, u, v, ql);
IF ~q1 THEN h[u,v] := 0 END
ELSE g1 := TRUE
END
END
UNTIL g1 OR (k = 8);
q:=ql
END Try;,
PROCEDURE Clear;
VAR, j: INTEGER,;
BEGIN

FORi:=0TO n-1 DO
FORj:=0TO n-1 DO h[i,j] := 0 END

END

END Clear;

PROCEDURE KnightsTour(i, j;: INTEGER; VAR done: BOBAN);
BEGIN Clear; h[i, j] :=1; Try(2, i, j, done);
END KnightsTour.

Table 3.1 indicates solutions obtained with inigiakitions <3,3>, <2,4> forn = 5 and <1,1> for 6.=

23 10 15 4 25 23 4 9 14 25
16 5 24 9 14 10 15 24 1 8
11 22 1 18 3 5 22 3 18 13

6 17 20 13 8 16 11 20 7 2
21 12 7 2 19 21 6 17 12 19

1 16 7 26 11 14
34 25 12 15 6 27
17 2 33 8 13 10



97

32 3 24 21 28 5
23 18 3 30 9 20
36 31 22 19 4 29

Table 3.1 Three Knights' Tours.

What abstractions can now be made from this exaé@rijbich pattern does it exhibit that is typical for
this kind of problem-solving algorithms? What ddteteach us? The characteristic feature is thegass
toward the total solution are attempted and recbitti@t may later be taken back and erased in the
recordings when it is discovered that the step chatgossibly lead to the total solution, that step
leads into a dead-end street. This action is caldedktracking The general pattern below is derived from
TryNextMoveassuming that the number of potential candidateach step is finite.

PROCEDURE Try;
BEGIN intialize selection of candidates;
REPEAT select next;
IF acceptable THEN
record it;
IF solution incomplete THEN Try;
IF not successful THEN cancel recordiipD
END
END
UNTIL successful OR no more candidates
END Try

Actual programs may, of course, assume variousva@re forms of this schema. A frequently
encountered pattern uses an explicit level paranredeating the depth of recursion and allowing do
simple termination condition. If, moreover, at eatbp the number of candidates to be investigated i
fixed, say m, then the derived schema shown befiplies; it is to be invoked by the statement Try(1)

PROCEDURE Try(i: INTEGER);
VAR k: INTEGER,;
BEGIN k :=0;
REPEAT k := k+1; select k-th candidate;
IF acceptable THEN
record it;
IFi<nTHEN Try(i+1);
IF not successful THEN cancel recogdiiND
END
END
UNTIL successful OR (k = m)
END Try

The remainder of this chapter is devoted to thattnent of three more examples. They display various
incarnations of the abstract schema and are indladefurther illustrations of the appropriate use o
recursion.

3.5. The Eight Queens Problem

The problem of the eight queens is a well-knownmgXa of the use of trial-and-error methods and of
backtracking algorithms. It was investigated byFCGauss in 1850, but he did not completely sdlve i
This should not surprise anyone. After all, therahgeristic property of these problems is that ttiefy
analytic solution. Instead, they require large amewf exacting labor, patience, and accuracy. Such
algorithms have therefore gained relevance almadtigively through the automatic computer, which
possesses these properties to a much higher dbgrepeople, and even geniuses, do.

The eight queens poblem is stated as follows (see[3-4]): Eight queens are to be placed on &he
board in such a way that no queen checks agaigsither queen. Using the last schema of Sect. 34 a
template, we readily obtain the following crudesien of a solution:
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PROCEDURE Try(i: INTEGER);
BEGIN
initialize selection of positions for i-th queen
REPEAT make next selection;
IF safe THEN SetQueen;
IF i< 8 THEN Try(i+1);
IF not successful THEN RemoveQueen END
END
END
UNTIL successful OR no more positions
END Try

In order to proceed, it is necessary to make sameritments concerning the data representationeSinc
we know from the rules of chess that a queen chaltkther figures lying in either the same column,
row, or diagonal on the board, we infer that eamlaran may contain one and only one queen, and that
the choice of a position for the i th queen maydsdricted to the i th column. The parameter iefae
becomes the column index, and the selection prdoegmsitions ranges over the eight possible \alue
for a row index |j.

There remains the question of representing thet e&jgbens on the board. An obvious choice would
again be a square matrix to represent the boatd bttle inspection reveals that such a repregent
would lead to fairly cumbersome operations for &ireg the availability of positions. This is highly
undesirable since it is the most frequently exetuperation. We should therefore choose a data
representation which makes checking as simple ssille. The best recipe is to represent as direstly
possible that information which is truly relevandamost often used. In our case this is not théipos

of the queens, but whether or not a queen hasdgiteeen placed along each row and diagonals. (We
already know that exactly one is placed in eachiroal k for 0< k < i). This leads to the following
choice of variables:

VAR x: ARRAY 8 OF INTEGER,;
a: ARRAY 8 OF BOOLEAN;
b, c: ARRAY 15 OF BOOLEAN

where

X; denotes the position of the queen in the i throolu
g means "no queen lies in the j th row";

bx means "no queen occupies the k th /-diagonal;
Cx means "no queen sits on the k th \-diagonal.

We note that in a /-diagonal all fields have theneasums of their coordinates i and j, and that in a
diagonal the coordinate differences i-j are cortstéhe appropriate solution is shown in the follogi
programQueensGiven these data, the statem®ertQueeris elaborated to

X[i] :=J; a[j] := FALSE; b[i+j] := FALSE; c[i-j+7] := FALSE
the statemerRemoveQueess refined into
afj] := TRUE; b[i+j] := TRUE; c[i-j+7] := TRUE

and the conditiorsafeis fulfilled if the field <i, j> lies in in a rovand in diagonals which are still free.
Hence, it can be expressed by the logical expnessio

a[j] & b[i+]] & c[i-j+7]

This completes the development of this algorithmat is shown in full as Program 3.4. The computed
solutionis x=(1,5, 8, 6, 3, 7, 2, 4) and iswhan Fig. 3.9.
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Fig. 3.9. A solution to the Eight Queens problem

PROCEDURE Try(i: INTEGER; VAR g: BOOLEAN);
VAR j: INTEGER,;
BEGIN j:=0;
REPEAT q := FALSE;
IF a[j] & b[i+j] & c[i-j+7] THEN
X[l =1];
a[j] := FALSE; b[i+]] := FALSE; c[i-j+7}= FALSE;
IFi<7THEN
Try(i+1, q);
IF ~q THEN
a[j] := TRUE; b[i+]] := TRUE; c[i47] := TRUE
END
ELSE g .= TRUE
END
END ;
INC(j)
UNTILgOR (j=8)
END Try;,

PROCEDURE Queens;
VAR i: INTEGER; (*uses global writer W*)
BEGIN

FORi:= 0TO 7 DO a[i] .= TRUEEND ;
FORi:= 0 TO 14 DO bl[i] := TRUE; c[i] := TRUEND ;
Try(0,0);
FORi:=0 TO 7 DO Texts.Writelnt(W, x[i], 4) HN;
Texts.WriteLn(W)

END Queens.

Before we abandon the context of the chess bdaedight queens example is to serve as an illigsirat
of an important extension of the trial-and-errayosithm. The extension is -- in general terms -find
not only one, but all solutions to a posed problem.

The extension is easily accommodated. We are w@lirthe fact that the generation of candidates must
progress in a systematic manner that guaranteeantbdate is generated more than once. This psopert
of the algorithm corresponds to a search of thelidarte tree in a systematic fashion in which everge

is visited exactly once. It allows -- once a saatis found and duly recorded -- merely to proceethe
next candidate delivered by the systematic seleqtiocess. The general schema is as follows:

PROCEDURE Try(i: INTEGER);
VAR k: INTEGER;
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BEGIN
FORk:=0TOn-1 DO
select k th candidate;
IF acceptable THEN record it;
IF i<n THEN Try(i+1) ELSE output soluticEND ;
cancel recording
END
END
END Try

Note that because of the simplification of the teation condition of the selection process to tingle
term k = n, the repeat statement is appropriatgyaced by a for statement. It comes as a surjhride
the search for all possible solutions is realizg@ lsimpler program than the search for a sindlgtiso.

The extended algorithm to determine all 92 soliofthe eight queens problem is shown in Program
3.5. Actually, there are only 12 significantly @ifing solutions; our program does not recognize
symmetries. The 12 solutions generated first atediin Table 3.2. The numbers n to the right izigic
the frequency of execution of the test for safle§ielts average over all 92 solutions is 161.

PROCEDURE write;
VAR k: INTEGER,;

BEGIN (*global writer W*)
FOR k :=0 TO 7 DO Texts.WriteInt(W, x[k], £ND ;
Texts.WriteLn(W)

END write;

PROCEDURE Try(i: INTEGER);
VAR j: INTEGER,;
BEGIN
FORj:=1TO 8 DO
IF a[j] & b[i+]] & cJi-j+7] THEN
X[i] =1j;
afj] := FALSE; b[i+]j] := FALSE; c[i-j+71= FALSE;
IFi<7 THEN Try(i+1) ELSE write END ;
afj] := TRUE; b[i+j] := TRUE; c[i-j+7] :=TRUE
END
END
END Try;

PROCEDURE AllQueens;
VAR i: INTEGER;

BEGIN
FORi:= 0TO 7 DO a[i] := TRUE END ;
FORi:= 0TO 14 DO b[i] := TRUE; c[i] := TRUEND ;
Try(0)
END AllQueens.
x1 X2 x3 x4 x5 X6 X7 x8 n
1 5 8 6 3 7 2 4 876
1 6 8 3 7 4 2 5 264
1 7 4 6 8 2 5 3 200
1 7 5 8 2 4 6 3 136
2 4 6 8 3 1 7 5 504
2 5 7 1 3 8 6 4 400
2 5 7 4 1 8 6 3 072
2 6 1 7 4 8 3 5 280
2 6 8 3 1 4 7 5 240
2 7 3 6 8 5 1 4 264



2 7 5 8 1 4 6 3 160
2 8 6 1 3 5 7 4 336

Table 3.2 Twelve Solutions to the Eight Queendero.

3.6. The Stable Marriage Problem

Assume that two disjoint sets A and B of equal sizge given. Find a set of n pairs <a, b> suchaha
A and b in B satisfy some constrains. Many differamteria for such pairs exist; one of them is thke
called thestable marriage rule

Assume that A is a set of men and B is a set of @orach man and each women has stated distinct
preferences for their possible partners. If theonptes are chosen such that there exists a mam and
woman who are not married, but who would both preéeh other to their actual marriage partnersy the
the assignment is unstable. If no such pair exisis, called stable. This situation characterizeny
related problems in which assignments have to bdenaacording to preferences such as, for example,
the choice of a school by students, the choicealiits by different branches of the armed seryiets

The example of marriages is particularly intuitiveste, however, that the stated list of preferenses
invariant and does not change after a particulsigasent has been made. This assumption simplifies
the problem, but it also represents a grave distodf reality (called abstraction).

One way to search for a solution is to try pairrfgmembers of the two sets one after the otheil that
two sets are exhausted. Setting out to find ablstassignments, we can readily sketch a solution b
using the program schemaiQueensas a template. L&try(m)denote the algorithm to find a partner
for man m, and let this search proceed in the oodehe man's list of stated preferences. The first
version based on these assumptions is:

PROCEDURE Try(m: man);
VAR r: rank;
BEGIN
FORr:=0TO n-1 DO
pick the r th preference of man m;
IF acceptable THEN record the marriage;
IF mis not last man THEN Try(successo}(m)
ELSE record the stable set
END ;
cancel the marriage
END
END
END Try

The initial data are represented by two matricasitidicate the men's and women's preferences.

VAR wmr: ARRAY n, n OF woman
mwr: ARRAY n, n OF man

Accordingly, wmp, denotes the preference list of man m, i.e., wiig the woman who occupies the r th
rank in the list of man m. Similarly, myris the preference list of woman w, and mwis her r th
choice.

A sample data set is shown in Table 3.3.

r= 12345678 12345678

m= 1 72651384 w=1l 46528137
2 43268175 2 85316742
3 32418576 3 68123475
4 38425671 4 32476851
5 83456172 5 63145728
6 87524316 6 21387465
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1 7 35724186
7 8 72845631

Table 3.3 Sample Input Data f@emrandmwr

7 24631758
8 61427538
The result is represented by an array of womenich that %, denotes the partner of man m. In order to
maintain symmetry between men and women, an additiarray y is introduced, such that genotes

the partner of woman w.
VAR x, y: ARRAY n OF INTEGER

Actually, y is redundant, since it represents infation that is already present through the existeric.
In fact, the relations

X[yw]] =w, y[x[m]]=m

hold for all m and w who are married. Thus, theueay, could be determined by a simple search of x;
the array y, however, clearly improves the efficienf the algorithm. The information representedxby
and y is needed to determine stability of a progoset of marriages. Since this set is constructed
stepwise by marrying individuals and testing stgbéfter each proposed marriage, x and y are rieede
even before all their components are defined. tieloto keep track of defined components, we may
introduce Boolean arrays

singlem, singlew: ARRAY n OF BOOLEAN

with the meaning thadinglem, implies thatx, is defined, anginglew, implies thaty,, is defined. An
inspection of the proposed algorithm, however, kjyicgeveals that the marital status of a man is
determined by the value m through the relation

~singlem[k] = k<m

This suggests that the array singlem be omittedprdingly, we will simplify the name singlew to
single. These conventions lead to the refinementvahby the following procedur@ry. The predicate
acceptable can be refined into the conjunctiosidle andstable wherestableis a function to be still
further elaborated.

PROCEDURE Try(m: man);
VAR r: rank; w: woman;
BEGIN
FORr:=0TO n-1 DO
w = wmr[m,r];
IF single[w] & stable THEN
X[m] := w; y[w] := m; single[w] := FALSE;
IF m<nTHEN Try(m+1) ELSE record set END
single[w] := TRUE
END
END
END Try

At this point, the strong similarity of this soloti with procedureAllQueensis still noticeable. The
crucial task is now the refinement of the algorittondetermine stability. Unfortunately, it is naigsible

to represent stability by such a simple expresa®the safety of a queen's position. The firstildtzt
should be kept in mind is that stability follows Hgfinition from comparisons of ranks. The ranks of
men or women, however, are nowhere explicitly add in our collection of data established so far.
Surely, the rank of woman w in the mind of man m ba computed, but only by a costly search of w in
wmrm. Since the computation of stability is a vdrgguent operation, it is advisable to make this
information more directly accessible. To this emd,introduce the two matrices

rmw: ARRAY man, woman OF rank;
rwm: ARRAY woman, man OF rank
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such that rmy,, denotes woman w's rank in the preference listaf m, and rwi, denotes the rank
of man m in the list of w. It is plain that the wak of these auxiliary arrays are constant andnitally
be determined from the values of wmr and mwr.

The process of determining the predicate stable pr@eeeds strictly according to its original detfior.
Recall that we are trying the feasibility of mamyim and w, where w = wigg , i.e.,w is manmsr th
choice. Being optimistic, we first presume thab8ity still prevails, and then we set out to fipdssible
sources of trouble. Where could they be hidden?eTaee two symmetrical possibilities:

1. There might be a women pw, preferred to w bwhm herself prefers m over her husband.
2. There might be a man pm, preferred to m by wg himself prefers w over his wife.

Pursuing trouble source 1, we compare ranksppumand rwm, yiw for all women preferred to w by m,
i.e. for all pw = wmpg,; such that i < r. We happen to know that all themmdidate women are already
married because, were anyone of them still sirgleyould have picked her beforehand. The described
process can be formulated by a simple linear sgardbnotes stability.

s :=TRUE;i:=0;
WHILE (i<r) &s DO

pw :=wmr[m,i]; INC(i);

IF ~single[pw] THEN s := rwm[pw,m] > rwm[pw, Wpl] END
END

Hunting for trouble source 2, we must investigdtecandidates pm who are preferred by w to their
current assignation m, i.e., all preferred men pmwr, ; such that i < rwi,. In analogy to tracing
trouble source 1, comparison between ranks ggavand rmvgm xpm iS Necessary. We must be careful,
however, to omit comparisons involvingxwhere pm is still single. The necessary safegisaltest
pm < m, since we know that all men preceding madneady married.

The complete algorithm is shown in moddtarriage. Table 3.4 specifies the nine computed stable
solutions from input dateemr andmwr given in Table 3.3.

PROCEDURE write; (*global writer W*)
VAR m: man; rm, rw: INTEGER,;
BEGIN rm :=0; rw := 0;
FORmM :=0TO n-1 DO
Texts.Writelnt(W, x[m], 4);
rm := rmw[m, X[m]] + rm; rw := rwm[x[m], m] ¥w
END ;
Texts.Writelnt(W, rm, 8); Texts.Writelnt(W, r4); Texts.WriteLn(W)
END write;

PROCEDURE stable(m, w, r: INTEGER): BOOLEAN;
VAR pm, pw, rank, i, lim: INTEGER,;
S: BOOLEAN;
BEGIN S := TRUE; i:=0;
WHILE (i<r) & SDO
pw :=wmr[m,i]; INC(i);
IF ~single[pw] THEN S := rwm[pw,m] > rwm[pw[pw]] END
END ;
i :=0;lim :=rwm[w,m];
WHILE (i < lim) & S DO
pm = mwr[w,i]; INC(i);
IF pm <m THEN S := rmw[pm,w] > rmw[pm, X[pirEND
END ;
RETURN S
END stable;

PROCEDURE Try(m: INTEGER);
VAR w, r: INTEGER;



BEGIN
FOR r:=0TO n-1 DO w := wmr[m,r];
IF single[w] & stable(m,w,r) THEN
X[m] := w; y[w] := m; single[w] := FALSE;
IF m <n-1 THEN Try(m+1) ELSE write END ;
single[w] := TRUE
END
END
END Try;

PROCEDURE FindStableMarriages(VAR S: Texts.Scgnne
VAR m, w, r: INTEGER;

BEGIN
FOR m :=0TO n-1 DO

FOR =0 TO n-1 DO Texts.Scan(S); wmr[nsrS.i; rmw[m, wmr[m,r]] :=r END

END ;
FORw:=0TO n-1 DO
single[w] := TRUE;

FOR =0 TO n-1 DO Texts.Scan(S); mwr[wsS.i; rwm[w, mwr[w,r]] := r END

END ;
Try(0)
END FindStableMarriages
END Marriage

This algorithm is based on a straightforward baating scheme. Its efficiency primarily depends on

the sophistication of the solution tree pruningesoh. A somewhat faster, but more complex and less

transparent algorithm has been presented by Mc¥itee Wilson [3-1 and 3-2], who also have extended

it to the case of sets (of men and women) of unesjze

Algorithms of the kind of the last two examples,igthgenerate all possible solutions to a problem
(given certain constraints), are often used toctelee or several of the solutions that are optiimal
some sense. In the present example, one mightpstaince, be interested in the solution that on the

average best satisfies the men, or the women,esyene.

Notice that Table 3.4 indicates the sums of the&kgaof all women in the preference lists of their
husbands, and the sums of the ranks of all memeipteference lists of their wives. These are Hiees

rm =S m:1<m<n: M ym
rw = Sm:1<m<n: r'Wnmm

x1 X2 x3 x4 x5 X6 X7 x8 rm
1 7 4 3 8 1 5 2 6 16
2 2 4 3 8 1 5 7 6 22
3 2 4 3 1 7 5 8 6 31
4 6 4 3 8 1 5 7 2 26
5 6 4 3 1 7 5 8 2 35
6 6 3 4 8 1 5 7 2 29
7 6 3 4 1 7 5 8 2 38
8 3 6 4 8 1 5 7 2 34
9 3 6 4 1 7 5 8 2 43

¢ = number of evaluations of stability.

Solution 1 = male optimal solution; solution 9exrfale optimal solution.
Table 3.4 Result of the Stable Marriage Problem.

'w

32
27
20
22
15
20
13
18
11

21
449
59
62
47
143
47
758
34

The solution with the least value rm is called thale-optimal stable solution; the one with the desal
rw is the female-optimal stable solution. It liesthe nature of the chosen search strategy thal goo
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solutions from the men's point of view are genetrdtest and the good solutions from the women's
perspective appear toward the end. In this sehselgorithm is based toward the male populatidis T
can quickly be changed by systematically interciandhe role of men and women, i.e., by merely
interchanging mwr with wmr and interchanging rmvtharwm.

We refrain from extending this program further deave the incorporation of a search for an optimal
solution to the next and last example of a backingcalgorithm.

3.7. The Optimal Selection Problem

The last example of a backtracking algorithm isogidal extension of the previous two examples
represented by the general schema. First we wéng tise principle of backtracking to find sngle
solution to a given problem. This was exemplifigdthe knight's tour and the eight queens. Then we
tackled the goal of findingll solutions to a given problem; the examples weosdtof the eight queens
and the stable marriages. Now we wish to fine ptimalsolution.

To this end, it is necessary to generate all ptessiblutions, and in the course of generating them
retain the one that is optimal in some specificseefssuming that optimality is defined in terms of
some positive valued function f(s), the algorittevderived from the general schemaof by replacing
the statemeryrint solutionby the statement

IF f(solution) > f(optimum) THEN optimum := soluficEND

The variableoptimum records the best solution so far encountered. riliu it has to be properly
initialized; morever, it is customary to recordviuef(optimum)by another variable in order to avoid its
frequent recomputation.

An example of the general problem of finding animpt solution to a given problem follows: We
choose the important and frequently encounteretl@mo of finding an optimal selection out of a given
set of objects subject to constraints. Selectibat ¢onstitute acceptable solutions are gradualily bp

by investigating individual objects from the baset. sA procedure Try describes the process of
investigating the suitability of one individual elof, and it is called recursively (to investigdie hext
object) until all objects have been considered.

We note that the consideration of each objectddatiandidates in previous examples) has two pessibl
outcomes, namely, either the inclusion of the itigased object in the current selection or its esin.
This makes the use of a repeat or for statemeppioariate; instead, the two cases may as well be
explicitly written out. This is shown, assumingtttize objects are numbered 1, 2, ... , n.

PROCEDURE Try(i: INTEGER);
BEGIN
IF inclusion is acceptable THEN include i th exdij
IFi<nTHEN Try(i+1) ELSE check optimaliBND ;
eliminate i th object
END ;
IF exclusion is acceptable THEN
IFi<nTHEN Try(i+1) ELSE check optimaliBND
END
END Try

From this pattern it is evident that there afep@ssible sets; clearly, appropriate acceptabdiitieria
must be employed to reduce the number of investipeandidates very drastically. In order to elugda
this process, let us choose a concrete example $etection problem: Let each of the n objegts.a,
a1 be characterized by its weight and its value.thetoptimal set be the one with the largest suthef
values of its components, and let the constraird benit on the sum of their weight. This is a plerh
well known to all travellers who pack suitcasessleiecting from n items in such a way that theialtot
value is optimal and that their total weight doesexceed a specific allowance.

We are now in a position to decide upon the reptation of the given facts in terms of global vhles.
The choices are easily derived from the foregoienetbpments:



TYPE object = RECORD weight, value: INTEGER END ;
VAR obj: ARRAY n OF object;

limw, totv, maxv: INTEGER;

s, opts: SET

The variabledimw andtotv denote the weight limit and the total value ofrathbjects. These two values
are actually constant during the entire selectimtess. s represents the current selection of tshijec
which each object is represented by its name (nagts is the optimal selection so far encounteaed
maxyv is its value.

Which are now the criteria for acceptability of abject for the current selection? If we consider
inclusion then an object is selectable, if it fits into theight allowance. If it does not fit, we may stop
trying to add further objects to the current sétect If, however, we considegxclusion then the
criterion for acceptability, i.e., for the contiriee of building up the current selection, is thia total
value which is still achievable after this exclusiis not less than the value of the optimum so far
encountered. For, if it is less, continuation a&f #earch, although it may produce some solutiokh nei
yield the optimal solution. Hence any further shaon the current path is fruitless. From these two
conditions we determine the relevant quantitigse@omputed for each step in the selection process:

1.The total weightw of the selection s so far made.
2.The still achievable valuay of the current selection s.

These two entities are appropriately representegazameters of the procedure Try. The condition
inclusion is acceptablean now be formulated as

tw + a[i].weight < limw
and the subsequent check for optimality as

IF av > maxv THEN (*new optimum, record it*)
opts = s; maxv := av
END

The last assignment is based on the reasoninghtbatchievable value is the achieved value, orae al
objects have been dealt with. The conditewlusion is acceptable expressed by

av - a[i].value > maxv

Since it is used again thereafter, the value al¥].value is given the name avl in order to aineent
its reevaluation.

The entire procedure is now composed of the digclgzarts with the addition of appropriate
initialization statements for the global variabl€he ease of expressing inclusion and exclusiam tioe
set s by use of set operators is noteworthy. Tleltseopts and maxv of Selectionwith weight
allowances ranging from 10 to 120 are listed inl@&o5.

TYPE Object = RECORD value, weight: INTEGER END ;
VAR obj: ARRAY n OF Obiject;

limw, totv, maxv: INTEGER,;

s, opts: SET;

PROCEDURE Try(i, tw, av: INTEGER);
VAR avl: INTEGER;
BEGIN (*try inclusion*)
IF tw + obj[i].weight <= limw THEN
s:=s+{i};
IFi<nTHEN Try(i+1, tw + obj[i].weight, gv
ELSIF av > maxv THEN maxv ;= av; opts .= s
END ;
s:=s-{i}
END ;
(*try exclusion*)
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IF av > maxv + obj[i].value THEN
IFi<nTHEN Try(i+1, tw, av - obj[i].value)
ELSE maxv := av - obj[i].value; opts :='s
END

END

END Try;

PROCEDURE Selection(n, Weightinc, WeightLimit: INGER);
VAR i: INTEGER;
BEGIN limw :=0;
REPEAT limw := limw + WeightInc; maxv := 0;
s ={}; opts = {}; Try(0, 0, totv);
UNTIL limw >= WeightLimit
END Selection.

Weight 10 11 12 13 14 15 16 17 18 19 Tot
Value 18 20 17 19 25 21 27 23 25 24

10 * 18
20 * 27
30 * 52
40 * * 70
50 * * * * 84
60 * * * * * 99
70 * * * * * 115
80 * * * * * * 130
90 * * * * * * 139
100 * * * * * * * 157
110 * * * * * * * * 172
120 * * * * * * * * 183

Table 3.5 Sample Output from Optimal SelectioogPam.

This backtracking scheme with a limitation factartailing the growth of the potential search trealso
known as branch and bound algorithm.

Exercises

3.1 (Towers of Hanoi). Given are three rods andsksdof different sizes. The disks can be stacked u
on the rods, thereby forming towers. Let the n gligktially be placed on rod A in the order of
decreasing size, as shown in Fig. 3.10 for n =h& fask is to move the n disks from rod A to rod C
such that they are ordered in the original waysTas to be achieved under the constraints that

1. In each step exactly one disk is moved fromrodeo another rod.
2. A disk may never be placed on top of a smaikg.d

3. Rod B may be used as an auxiliary store.
Find an algorithm that performs this task. Notet thaower may conveniently be considered as
consisting of the single disk at the top, and tweer consisting of the remaining disks. Descrilee th

algorithm as a recursive program.

[

1

2

7 7 7
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Fig. 3.10. The towers of Hanoi

3.2. Write a procedure that generates all n! paatinuts of n elements,a.. , & in situ, i.e., without the
aid of another array. Upon generating the next p&tion, a parametric procedure Q is to be called
which may, for instance, output the generated ptation.

Hint: Consider the task of generating all permutatidrib® elements ja... , & as consisting of the
m subtasks of generating all permutations,pf.a, &.1 followed by @, where in the i th subtask the
two elements;and @ had initially been interchanged.

3.3. Deduce the recursion scheme of Fig. 3.11 wisichsuperposition of the four curves,WV,, W5,
W,. The structure is similar to that of the Sierpinglirves (3.21) and (3.22). From the recursion
pattern, derive a recursive program that drawseticasves.

Fig. 3.11. Curves W~ W,

3.4. Only 12 of the 92 solutions computed by thghEQueens algorithm are essentially different. The
other ones can be derived by reflections about axethe center point. Devise a program that
determines the 12 principal solutions. Note that, éxample, the search in column 1 may be
restricted to positions 1-4.

3.5 Change the Stable Marriage Program so thadtérchines the optimal solution (male or female). It
therefore becomes a branch and bound program ¢fleeepresented by Program 3.7.

3.6 A certain railway company serves n statiogs .S, S.1. It intends to improve its customer
information service by computerized informationntérals. A customer types in his departure
station SA and his destination SD, and he is suggpts be (immediately) given the schedule of the
train connections with minimum total time of theljoey. Devise a program to compute the desired
information. Assume that the timetable (which isuryalata bank) is provided in a suitable data
structure containing departure (= arrival) timesabbfavailable trains. Naturally, not all statiosse
connected by direct lines (see also Exercise 1.6).

3.7 The Ackermann Function A is defined for all nmggative integer arguments m and n as follows:
A@O,n) =n+1
A(m, 0) = A(m-1, 1) (m>0)
A(m, n) =A(m-1, A(m,n-1)) (m,n>0)
Design a program that computes A(m,n) without tee of recursion. As a guideline, use Program

2.11, the non-recusive version of Quicksort. Degiset of rules for the transformation of recursive
into iterative programs in general.
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4 Dynamic Information Structures

4.1. Recursive Data Types

In Chap. 2 the array, record, and set structures wéroduced as fundamental data structures. Gney
called fundamental because they constitute thelingilblocks out of which more complex structures ar
formed, and because in practice they do occur imegtiently. The purpose of defining a data type an
of thereafter specifying that certain variablesobéhat type, is that the range of values assunyetthése
variables, and therefore their storage patterfixésl once and for all. Hence, variables declarethis
way are said to bstatic However, there are many problems which involve feore complicated
information structures. The characteristic of theseblems is that not only the values but also the
structures of variables change during the commutaflhey are therefore calledi/namicstructures.
Naturally, the components of such structures aeg some level of resolution -- static, i.e., ok@f the
fundamental data types. This chapter is devotdlet@onstruction, analysis, and management of dignam
information structures.

It is noteworthy that there exist some close ariafogetween the methods used for structuring dalgos
and those for structuring data. As with all anadsgithere remain some differences, but a compadgon
structuring methods for programs and data is negkrss illuminating.

The elementary, unstructured statement is the rmsgigt of an expression's value to a variable. Its
corresponding member in the family of data struegtuis the scalar, unstructured type. These twdhare
atomic building blocks for composite statements @daid types. The simplest structures, obtainedijiro
enumeration or sequencing, are the compound stateane the record structure. They both consist of a
finite (usually small) number of explicitly enum&d components, which may themselves all be differe
from each other. If all components are identidadytneed not be written out individually: we usefir
statement and therray structure to indicate replication by a known, ténfactor. A choice among two or
more elements is expressed by the conditional @cdisestatement and by extensions of record types,
respectively. And finally, a repetiton by an initjaunknown (and potentially infinite) factor is pressed

by thewhile andrepeatstatements. The corresponding data structureeisehuencefile), the simplest
kind which allows the construction of types of mitie cardinality.

The question arises whether or not there existata structure that corresponds in a similar wath&
procedure statement. Naturally, the most intergséind novel property of procedures in this respeect
recursion. Values of such a recursive data typeldvoontain one or more components belonging to the
same type as itself, in analogy to a procedureatoing one or more calls to itself. Like procedydeta
type definitions might be directly or indirectlyagsive.

A simple example of an object that would most apgetely be represented as a recursively defingd ty

is the arithmetic expression found in programmimglages. Recursion is used to reflect the pasgibil
of nesting, i.e., of using parenthesized subexpmessas operands in expressions. Hence, let an
expression here be defined informally as follows:

An expression consists of a term, followed by aarator, followed by a term. (The two terms constitu
the operands of the operator.) A term is eithearaable -- represented by an identifier -- or apression
enclosed in parentheses.

A data type whose values represent such express@megasily be described by using the tools already
available with the addition of recursion:

TYPE expression = RECORD op: INTEGER,;
opdl, opd2: term
END

TYPE term = RECORD
IF t: BOOLEAN THEN id: Name ELSE subex: expressEND
END
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Hence, every variable of tygerm consists of two components, namely, the tagfieldd, if t is true, the
field id, or of the fieldsubexotherwise. Consider now, for example, the follogviaur expressions:

l.x+y
2.X-(y*2)
3.X+y)*(z-w)
4. (xIy+2)*w

These expressions may be visualized by the patterf$g. 4.1, which exhibit their nested, recursive
structure, and they determine the layout or mappfrtgese expressions onto a store.

1 + 2
T X T X
T y *
Fl T y
T z
3 * 4. *
+ /
FlT X T X
T y F +
FI1 T vy
FlT z T| z
T w T w

Fig. 4.1. Storage patterns for recursive recomgcsires

A second example of a recursive information stmecia the family pedigree: Let a pedigree be deffine
by (the name of) a person and the two pedigregbeoparents. This definition leads inevitably to an
infinite structure. Real pedigrees are bounded Umrat some level of ancestry information is mgssin

Assume that this can be taken into account by agsiirg a conditional structure:

TYPE ped = RECORD
IF known: BOOLEAN THEN name: Name; father, mothmed END
END

Note that every variable of tygeedhas at least one component, namely, the tagfedlddknown If its
value is TRUE, then there are three more fieldsemtise there is none. A particular value is shbere
in the forms of a nested expression and of a diadhat may suggest a possible storage patterrF{gee
4.2).

(T, Ted, (T, Fred, (T, Adam, (F), (F)), (F)), (Taw, (F), (T, Eva, (F), (F)))

The important role of the variant facility beconwsar; it is the only means by which a recursiveada
structure can be bounded, and it is therefore ewiteble companion of every recursive definitiomeT
analogy between program and data structuring cascispparticularly pronounced in this case. A
conditional (or selective) statement must necdgshe part of every recursive procedure in ordet th
execution of the procedure can terminate. In practdynamic structures involve references or prite
its elements, and the concept of an alternativaetiminate the recursion) is implied in the pointes
shown in the next paragraph.



T Ted

T Fred

T Adam

T Mary

T Eva

Fig. 4.2. An example of a recursive data structure

4.2. Pointers

The characteristic property of recursive structwrbgh clearly distinguishes them from the fundatakn
structures (arrays, records, sets) is their aliityary in size. Hence, it is impossible to assigfixed
amount of storage to a recursively defined strgstand as a consequence a compiler cannot associate
specific addresses to the components of such Vesiabhe technique most commonly used to master thi
problem involves dynamic allocation of storage,, iadlocation of store to individual componentstet
time when they come into existence during progratecetion, instead of at translation time. The
compiler then allocates a fixed amount of storagenald the address of the dynamically allocated
component instead of the component itself. Foraimss, the pedigree illustrated in Fig. 4.2 would be
represented by individual -- quite possibly nonimprdus -- records, one for each person. These p&rso
are then linked by their addresses assigned toegpectivefather and motherfields. Graphically, this
situation is best expressed by the use of arroyg®inters (Fig. 4.3).
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Fig. 4.3. Data structure linked by pointers

It must be emphasized that the use of pointersnfleiment recursive structures is merely a technique
The programmer need not be aware of their existebimrage may be allocated automatically the first
time a new component is referenced. However, iftéohnique of using references or pointers is made
explicit, more general data structures can be coctsid than those definable by purely recursivea dat
definiton. In particular, it is then possible tdfide potentially infinite or circular (graph) striuces and to
dictate that certain structures are shared. Itthesefore become common in advanced programming
languages to make possible the explicit manipulatid references to data in additon to the data
themeselves. This implies that a clear notatiorsilrttion must exist between data and referencelata
and that consequently data types must be introdwbede values are pointers (references) to other da
The notation we use for this purpose is the foliayvi

TYPET = POINTER TO TO

This type declaration expresses that values of Typee pointers to data of type TO. It is fundarabnt
important that the type of elements pointed tovident from the declaration of T. We say that Basind

to TO. This binding distinguishes pointers in higharel languages from addresses in assembly codes,
and it is a most important facility to increase ws#@g in programming through redundancy of the
underlying notation.

Values of pointer types are generated whenevetaiten is dynamically allocated. We will adhere to
the convention that such an occasion be explicitgntioned at all times. This is in contrast to the
situation in which the first time that an item iemioned it is automatically allocated. For thispnse,
we introduce a procedure New. Given a pointer égig of type T, the statement New(p) effectively
allocates a variable of type TO and assigns thet@oreferencing this new variable to p (see Fig).4
The pointer value itself can now be referred topag.e., as the value of the pointer variable p). |
contrast, the variable which is referenced by gesoted by p”. The referenced structures are tjpica
records. If the referenced record has, for exangpfeld x, then it is denoted by p”.x. Becauss itlear
that not the pointer p has any fields, but onlyréferenced record p”, we allow the abbreviatedtiut
p.x in place of p~.x.
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p: POINTER TO T -—|

\

pt: T

Fig. 4.4. Dynamic allocation of variable p”

It was mentioned above that a variant componemsgential in every recursive type to ensure finite
instances. The example of the family predigreefia pattern that exhibits a most frequently ocagri
constellation, namely, the case in which one oftthe cases features no further components. This is
expressed by the following declaration schema:

TYPE T = RECORD
IF nonterminal: BOOLEAN THEN S(T) END
END

S(T) denotes a sequence of field definitions winatudes one or more fields of type T, thereby eingu
recursivity. All structures of a type patternedeafthis schema exhibit a tree (or list) structureilar to
that shown in Fig. 4.3. Its peculiar property iatth contains pointers to data components withgefield
only, i.e., without further relevant informationh@ implementation technique using pointers suggests
easy way of saving storage space by letting thénfagmation be included in the pointer value its€he
common solution is to extend the range of valueallgfointer types by a single value that is poigtto

no element at all. We denote this value by theiabegmbol NIL, and we postulate that the value NIL
can be assumed by all pointer typed variables. &ktisnsion of the range of pointer values explaing
finite structures may be generated without the ieitppresence of variants (conditions) in their
(recursive) declaration.

The new formulations of the explicitly recursivetaladypes declared above are reformulated using
pointers as shown below. Note that the fieldwnhas vanished, sineg.knownis now expressed @s=

NIL. The renaming of the tygeedto personreflects the difference in the viewpoint brougboat by the
introduction of explicit pointer values. Insteadfwét considering the given structure in its eettyr and
then investigating its substructure and its compts)attention is focused on the components irfitsie
place, and their interrelationship (representegdigters) is not evident from any fixed declamtio

TYPE term = POINTER TO TermDescriptor;
TYPE exp = POINTER TO ExpDescriptor;
TYPE ExpDescriptor= RECORD op: INTEGER; opdl,2p@rm END ;
TYPE TermDescriptor = RECORD id: ARRAY 32 OF CHARIE
TYPE Person = POINTER TO RECORD
name: ARRAY 32 OF CHAR,;

father, mother: Person
END

Note: The typdersonpoints to records of an anonymous type (Personipésq.

The data structure representing the pedigree shiowigs. 4.2 and 4.3 is again shown in Fig. 4.5 in
which pointers to unknown persons are denoted by Whe resulting improvement in storage economy
is obvious.
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T Ted )‘ \
T Fred /o NIL T Mary NIL T
T Adam NIL [ NIL T Eva NIL [ NIL

Fig. 4.5. Data structure with NIL pointers

Again referring to Fig. 4.5, assume that Fred ardyMare siblings, i.e., have the same father andheno
This situation is easily expressed by replacing the NIL values in the respective fields of the two
records. An implementation that hides the concdégiainters or uses a different technique of storage
handling would force the programmer to represeatacestor records of Adam and Eve twice. Although
in accessing their data for inspection it doesmatter whether the two fathers (and the two mojremes
duplicated or represented by a single record, ftiference is essential when selective updating is
permitted. Treating pointers as explicit data iteénstead of as hidden implementation aids alloves th
programmer to express clearly where storage shariimgended and where it is not.

A further consequence of the explicitness of poiie that it is possible to define and maniputateic
data structures. This additional flexibility yieJdsf course, not only increased power but also irequ
increased care by the programmer, because the uhatigp of cyclic data structures may easily lead t
nonterminating processes.

This phenomenon of power and flexibility being rinéitely coupled with the danger of misuse is well
known in programming, and it particularly recalletGOTO statement. Indeed, if the analogy between
program structures and data structures is to lendgt, the purely recursive data structure couldlvee
placed at the level corresponding with the proocedwhereas the introduction of pointers is comparab
to the use of GOTO statements. For, as the GOT@nstat allows the construction of any kind of
program pattern (including loops), so do pointdi@rafor the composition of any kind of data struret
(including rings). The parallel development of esponding program and data structures is shown in
condensed form in Table 4.1.

Construction Pattern Program Statement Data Type

Atomic element Assignment Scalar type
Enumeration Compound statement Record type
Repetition (known factor) For statement Array type

Choice Conditional statement Type union (Variacbrd)
Repetition While or repeat statement  Sequence type
Recursion Procedure statement Recursive data type
General graph GO TO statement Structure linkeddayters

Table 4.1 Correspondences of Program and DatatGtes.

In Chap. 3, we have seen that iteration is a speease of recursion, and that a call of a recursive
procedure P defined according to the following sthe

PROCEDURE P;
BEGIN

IF B THEN PO; P END
END

where PO is a statement not involving P, is egeiviaio and replaceable by the iterative statement
WHILE B DO PO END
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The analogies outlined in Table 4.1 reveal thaalar relationship holds between recursive dafzesy
and the sequence. In fact, a recursive type defwedrding to the schema

TYPE T = RECORD
IF b: BOOLEAN THEN tO: TO; t: T END
END

where TO is a type not involving T, is equivalant replaceable by a sequence of TOs.

The remainder of this chapter is devoted to theegdion and manipulation of data structures whose
components are linked by explicit pointers. Streetuwith specific simple patterns are emphasized in
particular; recipes for handling more complex duues may be derived from those for manipulating
basic formations. These are the linear list or rbéisequence -- the simplest case -- and trees. Our
preoccupation with these building blocks of datactrring does not imply that more involved struesu

do not occur in practice. In fact, the followingist appeared in a Zurich newspaper in July 1922isad
proof that irregularity may even occur in casesolhisually serve as examples for regular structures
such as (family) trees. The story tells of a maw Vements the misery of his life in the followin@ras:

I married a widow who had a grown-up daughter. Mhér, who visited us quite often, fell in lovehwit
my step-daughter and married her. Hence, my fattemame my son-in-law, and my step-daughter
became my mother. Some months later, my wife gakdda son, who became the brother-in-law of my
father as well as my uncle. The wife of my fatthert is my stepdaughter, also had a son. Thereggt &
brother and at the same time a grandson. My wif@ysgrandmother, since she is my mother's mother.
Hence, | am my wife's husband and at the samehgnestep-grandson; in other words, | am my own
grandfather.

43. Linear Lists

4.3.1. Basic Operations

The simplest way to interrelate or link a set @heénts is to line them up in a single list or quéiog, in
this case, only a single link is needed for eaemeht to refer to its successor.

Assume that typeBlodeandNodeDesare defined as shown below. Every variable of tyoeleDesc
consists of three components, namely, an idengfidgy, the pointer to its successor, and possibiér
associated information. For our further discussamy keyandnextwill be relevant.

TYPE Node = POINTER TO NodeDesc;
TYPE NodeDesc = RECORD key: INTEGER; next: Ptradat END ;

VAR p, g: Node (*pointer variables*)

A list of nodes, with a pointer to its first compan being assigned to a variable p, is illustratefig.

4.6. Probably the simplest operation to be perfarmith a list as shown in Fig. 4.6 is the insertafran
element at its head. First, an element of tyjpeeDesds allocated, its reference (pointer) being assign
to an auxiliary pointer variable, say g. Thereaf@rsimple reassignment of pointers completes the
operation. Note that the order of these threersiatés is essential.

NEW(Q); g.next:=p;p:=q

Z
=




Fig. 4.6. Example of a linked list

The operation of inserting an element at the hdaal Isst immediately suggests how such a list can b
generated: starting with the empty list, a headibgment is added repeatedly. The process of list
generation is expressed in by the following pietprogram; here the number of elements to be linked
n.

p = NIL; (*start with empty list*)
WHILE n>0 DO
NEW(q); g.next := p; p :=q;
g.key :=n; DEC(n)
END

This is the simplest way of forming a list. Howevtre resulting order of elements is the inversthef
order of their insertion. In some applications tkisindesirable, and consequently, new elements loeus
appended at the end instead of the head of thé\ltebugh the end can easily be determined byaa s¢
the list, this naive approach involves an effodttmay as well be saved by using a second posagrg,
always designating the last element. This methofbisexample, applied in Program 4.4, which getesra
cross-references to a given text. Its disadvaniagiaat the first element inserted has to be tceate
differently from all later ones.

The explicit availability of pointers makes certaoperations very simple which are otherwise
cumbersome; among the elementary list operatianshase of inserting and deleting elements (selkecti
updating of a list), and, of course, the traveodal list. We first investigate listsertion

Assume that an element designated by a pointeiabla) q is to be inserted in a lisfter the element
designated by the pointer p. The necessary paasiignments are expressed as follows, and theicteff
is visualized by Fig. 4.7.

g.next := p.next; p.next:=q

q —» q —»

S el T T el

Fig. 4.7. Insertion after p*
If insertion before instead of after the designagéginent p” is desired, the unidirectional link ioha

seems to cause a problem, because it does notpramy kind of path to an element's predecessors.

However, a simple trick solves our dilemma. Itlisstrated in Fig. 4.8. Assume that the key of itiegv
elementis 8.

NEW(q); g := p*; p.key := k; p.next := q
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Fig. 4.8. Insertion before p"

The trick evidently consists of actually insertiaghew component after p” and thereafter intercimgngi
the values of the new element and p”.

Next, we consider the processlist deletion. Deleting the successor of a p” is straightfodvahis is
shown here in combination with the reinsertion lo¢ deleted element at the head of another list

(designated by q). Figure 4.9 illustrates the sitmaand shows that it constitutes a cyclic excleaaf
three pointers.

r:= p.next; p.next :=r.next; r.next:=q; qr:=

a
\

®

/
1A 4
\
a

\
!

Fig. 4.9. Deletion and re-insertion

The removal of a designated element itself (instefdts successor) is more difficult, because we
encounter the same problem as with insertion:rigabiackward to the denoted element's predecessor is
impossible. But deleting the successor after moitagalue forward is a relatively obvious and sienp
solution. It can be applied whenever p” has a ssorei.e., is not the last element on the listweler, it
must be assured that there exist no other variglolieging to the now deleted element.

We now turn to the fundamental operation oftliatersal Let us assume that an operation P(x) has to be
performed for every element of the list whose felement is p”. This task is expressible as follows

WHILE list designated by p is not empty DO
perform operation P;
proceed to the successor

END

In detalil, this operation is descibed by the follogvstatement:
WHILE p # NIL DO
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P(p); p := p.next
END

It follows from the definitions of the while statemt and of the linking structure that P is appteall
elements of the list and to no other ones.

A very frequent operation performed is lsgarchingfor an element with a given key x. Unlike for
arrays, the search must here be purely sequehtialsearch terminates either if an element is farmé
the end of the list is reached. This is reflectgdtogical conjunction consisting of two terms.akg we
assume that the head of the list is designateddoyrder p.

WHILE (p # NIL) & (p.key # x) DO p := p.next END

p = NIL implies that p® does not exist, and heriwd the expression p.key # x is undefined. Therastle
the two terms is therefore essential.

4.3.2. Ordered Listsand Reorganizing Lists

The given linear list search strongly resemblessttggch routines for scanning an array or a seguémc
fact, a sequence is precisely a linear list forclvhihe technique of linkage to the successor is lef
unspecified or implicit. Since the primitive sequaeroperators do not allow insertion of new elements
(except at the end) or deletion (except removalllogélements), the choice of representation isviédte
open to the implementor, and he may well use sei@liailocation, leaving successive components in
contiguous storage areas. Linear lists with extppiointers provide more flexibility, and therefdiey
should be used whenever this additional flexibiktyyeeded.

To exemplify, we will now consider a problem thathwccur throughout this chapter in order to iate
alternative solutions and techniques. It is thebfmm of reading a text, collecting all its wordsida
counting the frequency of their occurrence. ltalied the construction of@ncordanceor the generation
of across-reference list

An obvious solution is to construct a list of worffdsind in the text. The list is scanned for eachdwéf
the word is found, its frequency count is increreenibtherwise the word is added to the list. Wdlsha
simply call this process search, although it mayalty also include an insertion. In order to béeaio
concentrate our attention on the essential palisbhandling, we assume that the words have ajread
been extracted from the text under investigati@vehbeen encoded as integers, and are availatiie in
from of an input sequence.

The formulation of the procedure calledarchfollows in a straightforward manner. The varialiet
refers to the head of the list in which new wordsiaserted accordingly. The complete algorithiisted
below; it includes a routine for tabulating the stsncted cross-reference list. The tabulation medean
example in which an action is executed once foh eement of the list.

TYPE Word = POINTER TO
RECORD key, count: INTEGER; next: Word END

PROCEDURE search(x: INTEGER; VAR root: Word);
VAR w: Word;
BEGIN w := root;
WHILE (w # NIL) & (w.key # x) DO w := w.nexEND ;
(* (w = NIL) OR (w.key = x) *)
IFw=NIL THEN (*new entry*)
W 1= root;
NEW(root); root.key := x; root.count :=rbot.next := w
ELSE INC(w.count)
END
END search;

PROCEDURE PrintList(w: Word);
BEGIN (*uses global writer W *)
WHILE w # NIL DO



Texts.Writelnt(W, w.key, 8); Texts.Writé{WW/, w.count, 8); Texts.WriteLn(W);
W = w.next
END
END PrintList;

The linear scan algorithm resembles the searcteduve for arrays, and reminds us of a simple teghni
used to simplify the loop termination conditionethse of a sentinel. A sentinel may as well be irsed
list search; it is represented by a dummy elemetiteaend of the list. The new procedure is lisgtetbw.
We must assume that a global variabémtinelis added and that the initialization of root :=LNk

replaced by the statements
NEW(sentinel); root := sentinel
which generate the element to be used as sentinel.

PROCEDURE search(x: INTEGER; VAR root: Word);
VAR w: Word;
BEGIN w := root; sentinel.key := x;
WHILE w.key # x DO w := w.next END ;
IF w = sentinel THEN (*new entry*)
W = root;
NEW(root); root.key := x; root.count := 1otnext := w
ELSE INC(w.count)
END
END search

Obviously, the power and flexibility of the linkdidt are ill used in this example, and the linezarsof
the entire list can only be accepted in cases iictwkhe number of elements is limited. An easy
improvement, however, is readily at hand: the addist search. If the list is ordered (say by @aging
keys), then the search may be terminated at testlapon encountering the first key that is lathan
the new one. Ordering of the list is achieved Isgiting new elements at the appropriate placeddsté

at the head. In effect, ordering is practicallyaied free of charge. This is because of the easehlzh
insertion in a linked list is achieved, i.e., by kimgy full use of its flexibility. It is a possibtly not
provided by the array and sequence structurese(Motvever, that even in ordered lists no equivdten

the binary search of arrays is available).
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Fig. 4.10. Insertion in ordered list

Ordered list search is a typical example of theasibn, where an element must be inseghdadof a
given item, here in front of the first one whosey ke too large. The technique shown here, however,
differs from the one used shown earlier. Insteadapfying values, two pointers are carried alonth

list traversal; w2 lags one step behind wl and idestifies the proper insertion place when wl has
found too large a key. The general insertion steghown in Fig. 4.10. The pointer to the new eldmen
(w3) is to be assigned to w2”.next, except whenligteis still empty. For reasons of simplicity and
effectiveness, we prefer to avoid this distinctipnusing a conditional statement. The only wayvoic
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this is to introduce a dummy element at the listch@ he initializing statement root := NIL is acdiogly
replaced by

NEW(root); root.next := NIL

Referring to Fig. 4.10, we determine the conditimer which the scan continues to proceed to the ne
element; it consists of two factors, namely,

(w1l # NIL) & (wl.key < x)
The resulting search procedure is..

PROCEDURE search(x: INTEGER); VAR root: Word);
VAR wl, w2, w3: Word;
BEGIN (*w2 # NIL*)
w2 :=root; wl = w2.next;
WHILE (w1 # NIL) & (wl.key < x) DO
w2 :=wl; wl = w2.next
END ;
(* (wl = NIL) OR (wl.key >=x) *)
IF (wl = NIL) OR (wl.key > x) THEN (*new entry*
NEW(w3); w2.next := w3;
w3.key := x; w3.count := 1; w3.next ;= wl
ELSE INC(w1.count)
END
END search

In order to speed up the search, the continuatmrditon of the while statement can once again be
simplified by using a sentinel. This requires thidal presence of a dummy header as well as énsdiatt
the tail.

It is now high time to ask what gain can be expkdtem ordered list search. Remembering that the
additional complexity incurred is small, one shoutd expect an overwhelming improvement.

Assume that all words in the text occur with edteduency. In this case the gain through lexicobicad
ordering is indeed also nil, once all words areetls because the position of a word does not méitter
only the total of all access steps is significamd & all words have the same frequency of occueen
However, a gain is obtained whenever a new wottd ise inserted. Instead of first scanning the entir
list, on the average only half the list is scannie@nce, ordered list insertion pays off only if a
concordance is to be generated with many distictisvcompared to their frequency of occurrence. The
preceding examples are therefore suitable primaslyprogramming exercises rather than for practical
applications.

The arrangement of data in a linked list is recomaieel when the number of elements is relatively kmal
(< 50), varies, and, moreover, when no informai®given about their frequencies of access. A gjpic
example is the symbol table in compilers of prograng languages. Each declaration causes the additio
of a new symbol, and upon exit from its scope didht, it is deleted from the list. The use of gfe
linked lists is appropriate for applications witlatively short programs. Even in this case a cmnable
improvement in access method can be achieved byyasimple technique which is mentioned here again
primarily because it constitutes a pretty examjple demonstrating the flexibilities of the linkedtli
structure.

A characteristic property of programs is that oocences of the same identifier are very often ehast,

that is, one occurrence is often followed by onenore reoccurrences of the same word. This infdanat

is an invitation to reorganize the list after eacbess by moving the word that was found to theofdpe

list, thereby minimizing the length of the searditipthe next time it is sought. This method of asde
calledlist search with reorderingor -- somewhat pompously self-organizing listsearch. In presenting
the corresponding algorithm in the form of a prasegdwe take advantage of our experience mader so fa
and introduce a sentinel right from the start.datfa sentinel not only speeds up the searchinkhts
case it also simplifies the program. The list mogtally not be empty, but contains the sentinlelhgent
already. The initialization statements are



121

NEW(sentinel); root := sentinel

Note that the main difference between the new dlgorand the straight list search is the action of
reordering when an element has been found. Itea thetached or deleted from its old position and
inserted at the top. This deletion again requinesuse of two chasing pointers, such that the pesger
w2 of an identified element w1l is still locatabhis, in turn, calls for the special treatment lod first
element (i.e., the empty list). To conceive théilig process, we refer to Fig. 4.11. It shows the t
pointers when wl was identified as the desired elgmThe configuration after correct reordering is
represented in Fig. 4.12, and the complete nevekgaocedure is listed below.
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Fig. 4.11. List before re-ordering
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Fig. 4.12. List after re-ordering

PROCEDURE search(x: INTEGER; VAR root: Word);
VAR wl, w2: Word;
BEGIN w1l :=root; sentinel.key := x;
IF wl = sentinel THEN (*first element*)
NEW(root);
root.key := x; reoot.count := 1; root.nextsentinel
ELSIF wl.key = x THEN INC(w1.count)
ELSE (*search*)
REPEAT w2 :=w1l; wl := w2.next
UNTIL wl.key = x;
IF wl = sentinel THEN (*new entry*)
w2 := root; NEW(root);
root.key := x; root.count := 1; root.nextw2
ELSE (*found, now reorder*)
INC(wl1”.count);
w2.next := wl.next; wl.next := root; roetwl
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END
END
END search

The improvement in this search method strongly dépen the degree of clustering in the input dada.

a given factor of clustering, the improvement Wwi#l more pronounced for large lists. To providedeai

of how much gain can be expected, an empirical areazent was made by applying the above cross-
reference program to a short and a relatively leng and then comparing the methods of linear list
ordering and of list reorganization. The measurai éire condensed into Table 4.2. Unfortunateby, th
improvement is greatest when a different data drgé#ion is needed anyway. We will return to this
example in Sect. 4.4.

Test 1 Test 2
Number of distinct keys 53 582
Number of occurrences of keys 315 14341
Time for search with ordering 6207 3200622
Time for search with reordering 4529 681584
Improvement factor 1.37 4.70

Table 4.2 Comparsion of List Search Methods.

4.3.3. An Application: Partial Ordering (Topological Sorting)

An appropriate example of the use of a flexiblenatyic data structure is the process of topological
sorting. This is a sorting process of items oveichvta partial ordering is defined, i.e., where ateoing

is given over some pairs of items but not betweéwfathem. The following are examples of partial
orderings:

1.In a dictionary or glossary, words are defimeteirms of other words. If a word v is definedemts of
a word w, we denote this by{wv. Topological sorting of the words in a dictiopaneans arranging
them in an order such that there will be no forwafgrences.

2.A task (e.g., an engineering project) is brokpninto subtasks. Completion of certain subtaskstmu

usually precede the execution of other subtaska slibtask v must precede a subtask w, we wrjte v
w. Topological sorting means their arrangemennimier such that upon initiation of each subtdisk a
its prerequisite subtasks have been completed.

3.In a university curriculum, certain courses musttaken before others since they rely on the nahte
presented in their prerequisites. If a courseaspserequisite for course w, we writ¢ w. Topological
sorting means arranging the courses in such am traieno course lists a later course as prerdquisi

4.In a program, some procedures may contain oéligher procedures. If a procedure v is callecaby
procedure w, we write ¢ w. Topological sorting implies the arrangemenpuafcedure declarations in
such a way that there are no forward references.

In general, a partial ordering of a set S is aim@iebetween the elements of S. It is denoted bysgimbol
“{", verbalized byprecedesand satisfies the following three propertiesdens) for any distinct elements

X, Y, zofS:
1l.ifx{yand ¥ z, then X z (transitivity)
2.ifx{y, then not ¥ x (asymmetry)
3.notZ z (irreflexivity)
For evident reasons, we will assume that the sétsi® topologically sorted by an algorithm aretéin

Hence, a partial ordering can be illustrated byilrg a diagram or graph in which the vertices dertbé
elements of S and the directed edges representragdaelationships. An example is shown in Fig.3.1
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[¢}]

Fig. 4.13. Partially ordered set

The problem of topological sorting is to embedlaetial order in a linear order. Graphically, thigplies

the arrangement of the vertices of the graph iovg such that all arrows point to the right, asvatadn
Fig. 4.14. Properties (1) and (2) of partial ordgsi ensure that the graph contains no loops. Bhis i
exactly the prerequisite condition under which saclembedding in a linear order is possible.

Fig. 4.14. Linear arrangement of the partially oedieset of Fig. 4.13.

How do we proceed to find one of the possible lirederings? The recipe is quite simple. We digrt
choosing any item that is not preceded by anotber {there must be at least one; otherwise a lomddv
exist). This object is placed at the head of tilsailteng list and removed from the set S. The reingiset

is still partially ordered, and so the same algonittan be applied again until the set is empty.

In order to describe this algorithm more rigorousiy must settle on a data structure and repreganta
of S and its ordering. The choice of this represtion is determined by the operations to be perakm
particularly the operation of selecting elementthwiero predecessors. Every item should therefere b
represented by three characteristics: its ideatifim key, its set of successors, and a count of it
predecessors. Since the number n of elementsam8tigiven a priori, the set is conveniently oiged

as a linked list. Consequently, an additional eirtrihe description of each item contains the tmkhe
next item in the list. We will assume that the keye integers (but not necessarily the consecutive
integers from 1 to n). Analogously, the set of edem's successors is conveniently represented as a
linked list. Each element of the successor listaéscribed by an identification and a link to thetrigem

on this list. If we call the descriptors of the mést, in which each item of S occurs exactly qrieaders,
and the descriptors of elements on the successamckrailers, we obtain the following declaratiafs
data types:

TYPE Leader = POINTER TO LeaderDesc;
Trailer = POINTER TO TrailerDesc;

LeaderDesc = RECORD key, count: INTEGER,;
trail: Trailer; next: Leader
END;
TrailerDesc = RECORD id: Leader; next: Trailer
END
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Assume that the set S and its ordering relatioasritially represented as a sequence of paireps$ kn
the input file. The input data for the example ig.F.13 are shown below, in which the symbplre
added for the sake of clarity, symbolizing partiader:

1(2 2¢(4 4¢(6 2(10 4(8 6(3 1(3
3(5 5(8 7(5 7{(9 9¢(4 9{10

The first part of the topological sort program musad the input and transform the data into a list
structure. This is performed by successively regdirpair of keys x and y (ky). Let us denote the
pointers to their representations on the linketdolfdeaders by p and q. These records must bécldday

a list search and, if not yet present, be insdrtdtle list. This task is perfomed by a functiorgedure
calledfind. Subsequently, a new entry is added in the listadiers of x, along with an identification of y;
the count of predecessors of y is incremented byhls algorithm is callednput phase Figure 4.15
illustrates the data structure generated duringgesing the given input data. The function findglds

the pointer to the list element with key w.

In the following poece of program we make usdest scanninga feature of the Oberon system’s text
concept. Instead of considering a text (file) @@uence of characters, a text is considered egueisce
of tokens which are identifiers, numbers, strings, and mpecharacters (such as +, *, <, etc. The
procedurelexts.Scan(cans the text, reading the next token. The sc&lays the role of a text rider.

(*input phase*)
NEW!(head); tail := head; z := 0; Texts.Scan(S);
WHILE S.class = Texts.Int DO
X := S.i; Texts.Scan(S); y := S.i; p := find(®);= find(y);
NEW(1); t.id := q; t.next := p.trail;
p.trail :=t; INC(g.count); Texts.Scan(S)
END

Fig. 4.15. List structure generated by TopSort paoy

After the data structure of Fig. 4.15 has been tcoa®d in this input phase, the actual process of
topological sorting can be taken up as describee@bBut since it consists of repeatedly selecting
element with a zero count of predecessors, it sesmsible to first gather all such elements imkell
chain. Since we note that the original chain ofl&xa will afterwards no longer be needed, the diatte
called next may be used again to link the zerogueskor leaders. This operation of replacing oaéch
by another chain occurs frequently in list proaegsit is expressed in detail here, and for reasdns
convenience it constructs the new chain in reverder.
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(*search for leaders without predecessors*)
p = head; head := NIL;
WHILE p # tail DO
g :=p; p = g.next;
IF g.count = 0 THEN (*insert g” in new chain*)
g.next := head; head := g
END
END

Referring to Fig. 4.15, we see that the next cludileaders is replaced by the one of Fig. 4.16 ficiv
the pointers not depicted are left unchanged.

0 0 head

Z
=
A

v ’

Fig. 4.16. List of Leaders with zero count

After all this preparatory establishing of a conean representation of the partially ordered set/& can
finally proceed to the actual task of topologicaitisg, i.e., of generating the output sequence finst
rough version it can be described as follows:

g := head;

WHILE g # NIL DO (*output this element, then delét
Texts.Writelnt(W, q.key, 8); DEC(n);
t:= q.trail; g := g.next;
decrement the predecessor count of all its sscce
on trailer list t; if any count becomes 0, inghis
element in the leader list q

END

The statement that is to be still further refinemhstitutes one more scan of a list. In each step, t
auxiliary variable p designates the leader elemérmise count has to be decremented and tested.

WHILE t# NIL DO
p = t.id; DEC(p.count);
IF p.count = 0 THEN (*insert p” in leader lisgh)next :=q; q :=p END ;
t:=t.next

END

This completes the program for topological sortiNgte that a counter n was introduced to count the
leaders generated in the input phase. This coutgdseemented each time a leader element is outyhei
output phase. It should therefore return to zetheend of the program. Its failure to return ¢oozis an
indication that there are elements left in thedtme when none is without predecessor. In thig ths

set S is evidently not partially ordered. The otijpliase programmed above is an example of a process
that maintains a list that pulsates, i.e., in whiddments are inserted and removed in an unprbtiicta
order. It is therefore an example of a process hhiilizes the full flexibility offered by the expgltly
linked list.

VAR head, tail: Leader; n: INTEGER;
PROCEDURE find(w: INTEGER): Leader;

VAR h: Leader;
BEGIN h := head,; tail.key := w; (*sentinel*)
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WHILE h.key # w DO h := h.next END ;
IF h = tail THEN
NEW(tail); INC(n);
h.count := 0; h.trail := NIL; h.next :5lta
END ;
RETURN h
END find;

PROCEDURE TopSort(VAR R: Texts.Reader);
VAR p, g: Leader; t: Trailer; (*uses global veri W*)
X, ¥, n: INTEGER;
BEGIN (*initialize list of leaders with a dummyténg as sentinel*)
NEW!(head); tail := head; n := 0;
Texts.ReadInt(R, x); (*input phase*)
WHILE ~R.eot DO
Texts.Writelnt(W, x, 8); Texts.ReadInt(R, yexts.Writelnt(W, vy, 8);
Texts.WriteLn(W);
p = find(x); g := find(y);
NEW(1); t.id := q; t.next := p.trail;
p.trail :=t; INC(qg.count); Texts.ReadInt(g;
END ;
(*search for leaders without predecessors*)
p = head; head := NIL;
WHILE p # tail DO
g :=p; p = q.next;
IF g.count = 0 THEN (*insert q in new chaint)next := head; head := q END
END ;
(*output phase*) q := head;
WHILE g # NIL DO
Texts.WriteLn(W); Texts.WriteInt(W, g.key,;@EC(n);
t:=q.trail; q := gq.next;
WHILE t# NIL DO
p :=t.id; DEC(p.count);
IF p.count = 0 THEN (*insert p in leadisty) p.next :=q; q:=p END ;
t:=t.next
END
END ;
IF n# 0 THEN Texts.WriteString(W, "This setist partially ordered”) END ;
Texts.WriteLn(W)
END TopSort.

44 TreeStructures

4.4.1. Basic Concepts and Definitions

We have seen that sequences and lists may contigriendefined in the following way: A sequence
(list) with base type T is either

1. The empty sequence (list).
2.The concatenation (chain) of a T and a sequeitbebase type T.

Hereby recursion is used as an aid in definingracttring principle, namely, sequencing or itenatio
Sequences and iterations are so common that tleysarally considered as fundamental patterns of
structure and behaviour. But it should be kept indrthat they can be defined in terms of recursion,
whereas the reverse is not true, for recursion beagffectively and elegantly used to define muchiemo
sophisticated structures. Trees are a well-knovamge. Let a tree structure be defined as follows:
tree structure with base type T is either



1. The empty structure.

2.A node of type T with a finite number of assteihdisjoint tree structures of base type T, called
subtrees.

From the similarity of the recursive definitions séquences and tree structures it is evident ket t
sequence (list) is a tree structure in which eamtberhas at most one subtree. The list is therefise
called a degenerate tree.

There are several ways to represent a tree steudtior example, a tree structure with its base fype
ranging over the letters is shown in various way§ig. 4.17. These representations all show theesam
structure and are therefore equivalent. It is thaply structure that explicitly illustrates the bslaimg
relationships which, for obvious reasons, led te generally used name tree. Strangely enough, it is
customary to depict trees upside down, or -- if prefers to express this fact differently -- to whihe
roots of trees. The latter formulation, howevemnisleading, since the top node (A) is commonlyechl
the root.
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Fig. 4.17. Representation of tree structure byés}ed sets,
(b) nested parentheses, (c) indented text, angrégbh

An ordered tree is a tree in which the branchesach node are ordered. Hence the two ordereditrees
Fig. 4.18 are distinct, different objects. A nodethat is directly below node x is called a (direct)
descendantf x; if x is at level i, then y is said to belavel i+1. Conversely, node x is said to be the
(direct)ancestorof y. The root of a tree is defined to be at lé/elhe maximum level of any element of
atree is said to be its depthtaight

Fig. 4.18. Two distinct trees
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If an element has no descendants, it is calledrainalnode or deaf, and an element that is not terminal
is an interior node. The number of (direct) deseetsl of an interior node is called tiegree The
maximum degree over all nodes is the degree af¢lee The number of branches or edges that have to
traversed in order to proceed from the root to deno is called th@ath lengthof x. The root has path
length 0, its direct descendants have path leng#cl In general, a node at level i has path kengthe
path length of a tree is defined as the sum ofptite lengths of all its components. It is alsoezhlits
internal path lengthThe internal path length of the tree shown in Big.7, for instance, is 36. Evidently,
the average path length is

Pn = (Si:1<i<n:nxi)/n

where nis the number of nodes at level i. In order tardefvhat is called thexternal path lengthwe
extend the tree by a special node wherever a sulbtes missing in the original tree. In doing so, we
assume that all nodes are to have the same degirely the degree of the tree. Extending the trdleis
way therefore amounts to filling up empty branchesereby the special nodes, of course, have nbefurt
descendants. The tree of Fig. 4.17 extended withiapnodes is shown in Fig. 4.19 in which the sdec
nodes are represented by squares. The externalepagth is now defined as the sum of the path kengt
over all special nodes. If the number of specialascat level i is mthen the average external path length
is

Pext = Si: 1<i<mxi)/m

Fig. 4.19. Ternary tree extended with special nodes

In the tree shown in Fig. 4.19 the external patigtle is 120. The number of special nodes m to dedd

in a tree of degree d directly depends on the numiné original nodes. Note that every node hasxa
one edge pointing to it. Thus, there are m+n edlydise extended tree. On the other hand, d edges ar
emanating from each original node, none from trexigh nodes. Therefore, there exist d*n + 1 ediyes,

1 resulting from the edge pointing to the root. Te results yield the following equation betwebe t
number m of special nodes and n of original nodken + 1 = m+n, or

m = (d-1)xn+1

The maximum number of nodes in a tree of a givéghitd is reached if all nodes have d subtreespmxc
those at level h, all of which have none. For a trtedegree d, level 0 then contains 1 node (narttedy
root), level 1 contains its d descendants, levebrains the ddescendants of the d nodes at level 2, etc.
This yields

Ngh) = S:0<i<h:d
as the maximum number of nodes for a tree withhtdigand degree d. For d = 2, we obtain

Nyth) = 2'-1
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Of particular importance are the ordered treesegfrek 2. They are calldmnary trees. We define an
ordered binary tree as a finite set of elementsi¢apwhich either is empty or consists of a roodé)
with two disjoint binary trees called tiheft and theright subtreeof the root. In the following sections we
shall exclusively deal with binary trees, and werdfore shall use the word tree to meatdered binary
tree Trees with degree greater than 2 are cathedtiway treesand are discussed in Sect. 7 of this
chapter.

Familiar examples of binary trees are the famibet{pedigree) with a person's father and mother as
descendants (!), the history of a tennis tournaméthteach game being a node denoted by its wiandr

the two previous games of the combatants as itseddsnts, or an arithmetic expression with dyadic
operators, with each operator denoting a branclke math its operands as subtrees (see Fig. 4.20).

Fig. 4.20. Tree representation of expression (&)*(d — e*f)

We now turn to the problem of representation oédrdt is plain that the illustration of such resiue
structures in terms of branching structures imntetlissuggests the use of our pointer facility. fEhis
evidently no use in declaring variables with a dixegee structure; instead, we define the nodes as
variables with a fixed structure, i.e., of a fixgge, in which the degree of the tree determinesitimber

of pointer components referring to the node's sdstr Evidently, the reference to the empty tree is
denoted by NIL. Hence, the tree of Fig. 4.20 cdaasi$ components of a type defined as follows amag m
then be constructed as shown in Fig. 4.21.

TYPE Node = POINTER TO NodeDesc;
TYPE NodeDesc = RECORD op: CHAR; left, right: NdgldD
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Fig. 4.21. Tree of Fig. 4.21 represented as lirdagd structure



Before investigating how trees might be used adgedusly and how to perform operations on trees, we
give an example of how a tree may be constructed pyogram. Assume that a tree is to be generated
containing nodes with the values of the nodes beimgmbers read from an input file. In order to mak
the problem more challenging, let the task be trestuction of a tree with n nodes and minimaghei

In order to obtain a minimal height for a given ren of nodes, one has to allocate the maximum
possible number of nodes of all levels except thekt one. This can clearly be achieved by distirigu
incoming nodes equally to the left and right atheacde. This implies that we structure the treegfeen

n as shown in Fig. 4.22,forn=1, ..., 7.

O
o WP oy

n=7

Fig. 4.22. Perfectly balanced trees
The rule of equal distribution under a known numier nodes is best formulated recursively:

1. Use one node for the root.
2. Generate the left subtree with nl = n DIV 2 roufkethis way.
3. Generate the right subtree with nr = n - nhotles in this way.

The rule is expressed as a recursive procedurehwkeads the input file and constructs the perfectly
balanced tree. We note the following definition: tiee is perfectly balanced, if for each node the
numbers of nodes in its left and right subtreefedify at most 1.

TYPE Node = POINTER TO RECORD
key: INTEGER,; left, right: Node
END ;

VAR R: Texts.Reader; W: Texts.Writer; root: Node;

PROCEDURE tree(n: INTEGER): Node;
VAR new: Node;
x, nl, nr: INTEGER;
BEGIN (*construct perfectly balanced tree withades*)
IF n =0 THEN new := NIL
ELSE nl := n DIV 2; nr :=n-nl-1;
NEW!(new); Texts.ReadInt(R, new.key);
new.key := x; new.left := tree(nl); newht := tree(nr)
END ;
RETURN new
END tree;

PROCEDURE PrintTree(t: Node; h: INTEGER);
VAR i: INTEGER;
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BEGIN (*print tree t with indentation h*)
IFt# NIL THEN
PrintTree(t.left, h+1);
FORi:=1TO h DO Texts.Write(W, TABND ;
Texts.Writelnt(W, key, 6); Texts.Write(W);
PrintTree(t.right, h+1)
END
END PrintTree;

Assume, for example, the following input data fdrese with 21 nodes:
8911 15192021732156 41310 12 17 16 18

The callroot := tree(21)reads the input dara while constructing the péiféalanced tree shown in Fig.
4.23. Note the simplicity and transparency of fhviegram that is obtained through the use of recersi
procedures. It is obvious that recursive algorithane particularly suitable when a program is to
manipulate information whose structure is itselfirdsd recursively. This is again manifested in the
procedure which prints the resulting tree: The gnigte results in no printing, the subtree at ldvéh
first printing its own left subtree, then the nopgeyperly indented by preceding it with L tabs, dinelly

in printing its right subtree.

Fig. 4.23. Tree generated by preceding program

442 Basic
Operationson Binary Trees

There are many tasks that may have to be perfomedti@e structure; a common one is that of exeguti

a given operation P on each element of the treis. tRen understood to be a parameter of the more
general task of visting all nodes or, as it is Uguzalled, of tree traversal. If we consider tlask as a
single sequential process, then the individual socadee visited in some specific order and may be
considered as being laid out in a linear arrangémenfact, the description of many algorithms is
considerably facilitated if we can talk about pisieg the next element in the tree based in anrlyirtlp
order. There are three principal orderings thatrgmeaturally from the structure of trees. Like tree
structure itself, they are conveniently expressedecursive terms. Referring to the binary tred-iig.
4.24 in which R denotes the root and A and B detimdeft and right subtrees, the three orderimgs a

1. Preorder: R, A, B (visit root before the subd)ee
2. Inorder: AR, B
3. Postorder: A, B, R (visit root after the subsjee
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Fig. 4.24. Binary tree

Traversing the tree of Fig. 4.20 and recording ¢haracters seen at the nodes in the sequence of
encounter, we obtain the following orderings:

1.Preorder: *+a/bc-d*ef
2. Inorder: a+tb/c*d-e*f
3. Postorder: abc/+def*-*

We recognize the three forms of expressigmgorder traversal of the expression tree yieloiefix
notation; postordertraversal generatgsostfix notation; andnorder traversal yields conventionaifix
notation, although without the parentheses necgssatarify operator precedences.

Let us now formulate the three methods of travelsalthree concrete programs with the explicit
parameter t denoting the tree to be operated upadnvih the implicit parameter P denoting the ofiera
to be performed on each node. Assume the follow@afaitions:

TYPE Node = POINTER TO RECORD ... left, right: ddDEND

The three methods are now readily formulated asrse® procedures; they demonstrate again the fact
that operations on recursively defined data strestuare most conveniently defined as recursive
algorithms.

PROCEDURE preorder(t: Node);
BEGIN
IFt#NIL THEN
P(t); preorder(t.left); preorder(t.right)
END
END preorder

PROCEDURE inorder(t: Node);
BEGIN
IFt# NIL THEN
inorder(t.left); P(t); inorder(t.right)
END
END inorder

PROCEDURE postorder(t: Node);
BEGIN
IFt# NIL THEN
postorder(t.left); postorder(t.right); P(t)
END
END postorder

Note that the pointer t is passed as a value paeanmiéis expresses the fact that the relevantyeistthe
reference to the considered subtree and not thablamwhose value is the pointer, and which cowdd b
changed in case t were passed as a variable paramet

An example of a tree traversal routine is that iifitjng a tree, with appropriate indentation indiicg
each node's level.
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Binary trees are frequently used to represent afsata whose elements are to be retrievable ¢frau
unique key. If a tree is organized in such a way for each node ti, all keys in the left subtréd are
less than the key of ti, and those in the rightiagbare greater than the key of ti, then this isemlled a
search tree. In a search tree it is possible tatéoan arbitrary key by starting at the root ansteeding
along a search path switching to a node's lefight isubtree by a decision based on inspectiomatf t
node's key only. As we have seen, n elements maydamized in a binary tree of a height as litddag

n. Therefore, a search among n items may be pestbmuith as few as log n comparsions if the tree is
perfectly balanced. Obviously, the tree is a mudnensuitable form for organizing such a set of dladen

the linear list used in the previous section. As siearch follows a single path from the root ®dlesired
node, it can readily be programmed by iteration:

PROCEDURE locate(x: INTEGER; t: Node): Node;
BEGIN
WHILE (t # NIL) & (tkey # x) DO
IF tkey <x THEN t:= t.right ELSE t := tfteEND
END ;
RETURN t
END locate

The functionlocate(x, t)yields the value NIL, if no key with value x isufied in the tree with root t. As in
the case of searching a list, the complexity oftémmination condition suggests that a better sniuhay
exist, namely the use of a sentinel. This techniglexjually applicable in the case of a tree. Tée of
pointers makes it possible for all branches ofttbe to terminate with the same sentinel. The tiegul
structure is no longer a tree, but rather a treb all leaves tied down by strings to a single angoint
(Fig. 4.25). The sentinel may be considered asnanman, shared representative of all external noges b
which the original tree was extended (see Fig.4.19

PROCEDURE locate(x: INTEGER,; t: Ptr): Ptr;
BEGIN s.key := x; (*sentinel*)
WHILE t.key # x DO
IF t.key <x THEN t:= t.right ELSE t := tfteEND
END ;
RETURN t
END locate

Note that in this caslecate(x, t)yields the value s instead of NIL, i.e., the peirtb the sentinel, if no
key with value x is found in the tree with root t.

g
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Fig. 4.25. Search tree with sentinel
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4.4.3. TreeSearch and Insertion

The full power of the dynamic allocation techniquith access through pointers is hardly displayed by
those examples in which a given set of data ist,baild thereafter kept unchanged. More suitable
examples are those applications in which the siraadf the tree itself varies, i.e., grows andimir&ks
during the execution of the program. This is ale® ¢ase in which other data representations, sutfea
array, fail and in which the tree with elementskéid by pointers emerges as the most appropriate
solution.

We shall first consider only the case of a steaglibwing but never shrinking tree. A typical examjd

the concordance problem which was already invesiijan connection with linked lists. It is now te b
revisited. In this problem a sequence of wordsvsrg and the number of occurrences of each wosd ha
to be determined. This means that, starting witlerapty tree, each word is searched in the trei¢idf
found, its occurrence count is incremented; othsawi is inserted as a new word (with a countahited

to 1). We call the underlying tagkee search with insertionThe following data type definitions are
assumed:

TYPE Node = POINTER TO RECORD
key, count: INTEGER;
left, right: Node

END

Finding the search path is again straightforwardweéver, if it leads to a dead end (i.e., to an gmpt
subtree designated by a pointer value NIL), thengilren word must be inserted in the tree at thegbf
the empty subtree. Consider, for example, the pitmae shown in Fig. 4.26 and the insertion ofrihene
Paul The result is shown in dotted lines in the saitige.

.

NORMA |2
ﬁ - .\\
GEORGE |1 ER |2
| o | —_| - | —_|
[ N . Y
ANN [5 MARY |3 | PAUL 1, WALTER |4
e S e W [ W

Fig. 4.26. Insertion in ordered binary tree

The search process is formulated as a recursiveeguoe. Note that its parameter p is a variable
parameter and not a value parameter. This is @akbatause in the case of insertion a new poirakre
must be assigned to the variable which previouslyd lthe value NIL. Using the input sequence of 21
numbers that had been used above to constructetbeot Fig. 4.23, the search and insertion proaedur
yields the binary tree shown in Fig. 4.27, withal search(k, root)for each key k, where root is a
variable of typeNode



Fig. 4.27. Search tree generated by preceding amogr

PROCEDURE PrintTree(t: Node; h: INTEGER);
VAR i: INTEGER;
BEGIN (*print tree t with indentation h*)
IFt# NIL THEN
PrintTree(t.left, h+1);
FORi:=1TO h DO Texts.Write(W, TABND ;
Texts.Writelnt(W, t.key, 6); Texts.Waitn(W);
PrintTree(t.right, h+1)
END
END PrintTree;

PROCEDURE search(x: INTEGER; VAR p: Node);
BEGIN
IF p = NIL THEN (*x not in tree; insert*)
NEW(p); p.key := x; p.count := 1; p.left NIL; p.right := NIL
ELSIF x < p.key THEN search(x, p.left)
ELSIF x > p.key THEN search(x, p.right)
ELSE INC(p.count)
END
END search;

The use of a sentinel again simplifies the taskesamat. Clearly, at the start of the program theakde
root must be initialized by the pointer to the segitinstead of the value NIL, and before eachdetre
specified value x must be assigned to the key 6éltie sentinel.

PROCEDURE search(x: INTEGER; VAR p: Node);
BEGIN

IF x < p.key THEN search(x, p.left)

ELSIF x > p“key THEN search(x, p.right)

ELSIF p # s THEN INC(p.count)

ELSE (*insert*) NEW(p);

p.key:=x; p.left:=s; p.right:=s; pwd := 1

END

END

Although the purpose of this algorithm is searchihgan be used for sorting as well. In factegembles
the sorting by insertion method quite strongly, &mdause of the use of a tree structure insteah of
array, the need for relocation of the components/alithe insertion point vanishes. Tree sorting lsan
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programmed to be almost as efficient as the beal aorting methods known. But a few precautions
must be taken. After encountering a match, the element must also be inserted. If the case x =ypske
handled identically to the case x > p.key, thenallgerithm represents a stable sorting method,iieens

with identical keys turn up in the same sequencenstanning the tree in normal order as when they
were inserted.

In general, there are better ways to sort, butpiplieations in which searching and sorting are both
needed, the tree search and insertion algorithstrasgly recommended. It is, in fact, very oftemplegd

in compilers and in data banks to organize theaibj® be stored and retrieved. An appropriate gt@am
is the construction of a cross-reference indexaf@iven text, an example that we had already used t
illustrate list generation.

Our task is to construct a program that (while i@ text and printing it after supplying conséceit
line numbers) collects all words of this text, tigy retaining the numbers of the lines in whichheaord
occurred. When this scan is terminated, a tabl® ibe generated containing all collected words in
alphabetical order with lists of their occurrences.

Obviously, the search tree (also calleldxcographic treg is a most suitable candidate for representing
the words encountered in the text. Each node ndwmly contains a word as key value, but it is dle®
head of a list of line numbers. We shall call eaebording of an occurrence an item. Hence, we
encounter both trees and linear lists in this exandhe program consists of two main parts (segro
4.5), namely, the scanning phase and the tabléngiphase. The latter is a straightforward aptibcaof

a tree traversal routine in which visiting each eaaplies the printing of the key value (word) ahe
scanning of its associated list of line numbemn{i). The following are further clarifications regdjag

the Cross Reference Generattisted below. Table 4.4 shows the results of pgsitgy the text of the
preceding procedurgearch

1. Aword is considered as any sequence of letteidigits starting with a letter.

2. Since words may be of widely different lengttee actual characters are stored in an array huffer
and the tree nodes contain the index of the kagtscharacter.

3. ltis desirable that the line numbers be prifmealscending order in the cross-reference index.

Therefore, the item lists must be generated instree order as they are scanned upon printing. This
requirement suggests the use of two pointers it @amrd node, one referring to the first, and one
referring to the last item on the list. We assume éxistence of global writer W, and a variable
representing the current line number in the text.

CONST WordLen = 32;
TYPE Word = ARRAY WordLen OF CHAR;

Iltem =POINTER TO RECORD
Ino: INTEGER; next: Item
END ;

Node = POINTER TO RECORD
key: Word;
first, last: Item; (*list*)
left, right: Node (*tree*)
END ;

VAR line: INTEGER,;

PROCEDURE search(VAR w: Node; VAR a: Word);
VAR q: Item;
BEGIN
IF w = NIL THEN (*word not in tree; new entry, iegt*)
NEW(W); NEW(Qq); q.Ino := line;
COPY(a, w.key); w.first := q; w.last := q; w.le#t NIL; w.right := NIL
ELSIF w.key < a THEN search(w.right, a)
ELSIF w.key > a THEN search(w.left, a)
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ELSE (*old entry*) NEW(q); g.Ino := line; w.lasemrtt := q; w.last ;= q
END
END search;

PROCEDURE Tabulate(w: Node);
VAR m: INTEGER; item: Item;
BEGIN
IF w# NIL THEN
Tabulate(w.left);
Texts.WriteString(W, w.key); item := w.first; m 0;
REPEAT
IF m =10 THEN Texts.WriteLn(W); Texts.Write(WWAB); m := 0; END ;
INC(m); Texts.Writelnt(W, item.Ino, 6); item item.next
UNTIL item = NIL;
Texts.WriteLn(W);
Tabulate(w.right)
END
END Tabulate;

PROCEDURE CrossRef(VAR R: Texts.Reader);
VAR root: Node; (*uses global writer W*)

i: INTEGER; ch: CHAR; w: Word;
BEGIN root := NIL; line := 0;
Texts.Writelnt(W, 0, 6); Texts.Write(W, TAB); TexRead(R, ch);
WHILE ~R.eot DO
IF ch = 0DX THEN (*line end*) Texts.WriteLn(W);
INC(line); Texts.Writelnt(W, line, 6); Texts.We(W, 9X); Texts.Read(R, ch)
ELSIF ("A" <= ch) & (ch <="Z") OR ("a" <= ch) &ch <= "z") THEN
i:=0;
REPEAT
IF i < WordLen-1 THEN wi[i] := ch; INC(i) END
Texts.Write(W, ch); Texts.Read(R, ch)
UNTIL (i = WordLen-1) OR ~(("A" <= ch) & (ch <%Z")) &
~(("a" <=ch) & (ch <="2")) & ~(("0" <= ch) &ch <= "9"));
wl[i] ;= 0X; (*string terminator*)
search(root, w)
ELSE Texts.Write(W, ch); Texts.Read(R, ch)
END ;
END ;
Texts.WriteLn(W); Texts.WriteLn(W); Tabulate(root)
END CrossRef;

PROCEDURE search(x: INTEGER; VAR p: Node);
BEGIN

IF x < p.key THEN search(x, p.left)

ELSIF x > p“key THEN search(x, p.right)

ELSIF p # s THEN INC(p.count)

ELSE (*insert*) NEW(p);

p.key:=x; p.left :=s; p.rightss=p.count := 1

END

END

O~NO U~ WNEF,O

BEGIN 1
ELSE 5
3

ELSIF 4



END

IF

INC
INTEGER
NEW
Node
PROCEDURE
THEN
VAR
count
insert
key

left

p

right

S
search
X

Oo.poomol\.)mm_bolvoomo.bl\)\j
»

N
Nm@@l\)@w

Table 4.4 Sample output of cross reference gtorera

444, Tree Deetion

We now turn to the inverse problem of insertionetien. Our task is to define an algorithm for dielg,

i.e., removing the node with key x in a tree witldered keys. Unfortunately, removal of an element i
not generally as simple as insertion. It is striayivard if the element to be deleted is a termirade or
one with a single descendant. The difficulty lissremoving an element with two descendants, for we
cannot point in two directions with a single pomta this situation, the deleted element is tadg@aced

by either the rightmost element of its left subtogeby the leftmost node of its right subtree, both
which have at most one descendant. The detailsstangvn in the recursive procedudelete This
procedure distinguishes among three cases:

1. There is no component with a key equal to x.
2. The component with key x has at most one deseénd
3. The component with key x has two descendants.

PROCEDURE delete(x: INTEGER; VAR p: Node);
VAR q: Node;

PROCEDURE del (VAR r: Node);
BEGIN
IF r.right # NIL THEN del(r.right)
ELSE g.key :=r.key; g.count := r.count;
g:=r;r:=rleft
END
END del;

BEGIN (*delete*)
IF p = NIL THEN (*word is not in tree*)
ELSIF x < p.key THEN delete(x, p.left)
ELSIF x > p.key THEN delete(x, p.right)
ELSE (*delete p™*) q == p;
IF g.right = NIL THEN p := q.left
ELSIF g.left = NIL THEN p := qg.right
ELSE del(qg.left)
END
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END
END delete

The auxiliary, recursive procedure del is activatedase 3 only. It descends along the rightmaoashddr

of the left subtree of the element g” to be deledad then it replaces the relevant informatiory (&ed

count) in g™ by the corresponding values of théatrigost component r* of that left subtree, wheredfte
may be disposed.

We note that we do not mention a procedure thatdvoe the inverse of NEW, indicating that storagie i
no longer needed and therefore disposable andbleudtiis generally assumed that a computer system
recognizes a disposable variable through the cistaince that no other variables are pointing tang

that it therefore can no longer be referenced. Sudystem is called garbage collectarlt is not a
feature of a programming language, but rathersafifplementations.

In order to illustrate the functioning of procedudiedete we refer to Fig. 4.28. Consider the tree (a)nthe
delete successively the nodes with keys 13, 150 5T he resulting trees are shown in Fig. 4.28)(b-e

Fig. 4.28. Tree deletion
4.45. Analysisof Tree Search and Insertion

It is a natural reaction to be suspicious of tlgoathm of tree search and insertion. At least sineuld
retain some skepticism until having been given\a feore details about its behaviour. What worries
many programmers at first is the peculiar fact teterally we do not know how the tree will grove w
have no idea about the shape that it will assumecs#vt only guess that it will most probably nothoe
perfectly balanced tree. Since the average numbeoroparisons needed to locate a key in a perfectly
balanced tree with n nodes is approximately loth@,number of comparisons in a tree generatediby th
algorithm will be greater. But how much greater?

First of all, it is easy to find the worst casesdme that all keys arrive in already strictly astieg (or
descending) order. Then each key is appended inategito the right (left) of its predecessor, ahd t
resulting tree becomes completely degenerateijtitarns out to be a linear list. The average ceaffort

is thenn/2 comparisons. This worst case evidently leads teery poor performance of the search
algorithm, and it seems to fully justify our skeim. The remaining question is, of course, howljik
this case will be. More precisely, we should lige&khow the lengtla, of the search path averaged over all
n keys and averaged over all n! trees that are gegefrom the n! permutations of the original rtidi
keys. This problem of algorithmic analysis turns twube fairly straightforward, and it is presentexte
as a typical example of analyzing an algorithm aB as for the practical importance of its result.



Given are n distinct keys with values 1, 2, .... Assume that they arrive in a random order. The
probability of the first key -- which notably becemthe root node -- having the value i is 1/nldfs
subtree will eventually contain i-1 nodes, andright subtree n-i nodes (see Fig. 4.29). Let theraye
path length in the left subtree be denoted hyand the one in the right subtree is, @gain assuming
that all possible permutations of the remaining ke¥s are equally likely. The average path length i
tree with n nodes is the sum of the products o emxle's level and its probability of access. llhables
are assumed to be searched with equal likelihdweah, t

a = @:l1<i<np)/n
where pis the path length of node i.

Fig. 4.29. Weight distribution of branches
In the tree in Fig. 4.29 we divide the nodes ihit@¢ classes:

1. The i-1 nodes in the left subtree have an aegpath length;a
2. The root has a path length of 0.
3. The n-i nodes in the right subtree have an geepath length.a

Hence, the equation above can be expressed as@f swmterms 1) and 3)
&’ = ((-1)*ai+ () *a) /n

The desired quantity an is the average8faver alli = 1 ... n, i.e., over all trees wittetkey 1, 2, ..., n
at the root.

a = Q:l<i<ni(i-1)ai+(n-)a)/r’
2*S:1<i<n:(i-1) ay) /
2*@Si1<i<nii*g)/n?

This equation is a recurrence relation of the fexme fi(ay, &, ... , @1). From this we derive a simpler
recurrence relation of the form, a fx(a.1). We derive directly (1) by splitting off the larm, and (2)
by substituting n-1 for n:

(1) & =2*(n-1*ag../n* + 2* S:1<i<n:i*a)/rf
() 1= 2*@S:1<i<n-l:ii*a)/(n-1y
Multiplying (2) by (n-1§/n? yields
(3) 2*@Si:1<i<n-lii*a)/n’ = g,02* (n-1§/in?
and substituting the right part of (3) in (1), viredf
an = 2*(n-1)*a,/m + ga.*(n-1)*/rf = a.*(n-172/n?
It turns out that acan be expressed in non-recursive, closed fot@rims of the harmonic sum
Ho=1+12+1/3+..+1/n
& =2*(Hn* (n+l)/n—1)
From Euler's formula (using Euler's constant g570@...)

141
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H, = g+ Inn+1/120+ ...

we derive, for large n, the approximate value
a =2*(nn+g-1)

Since the average path length in the perfectlyiuaid tree is approximately
a =logn -1

we obtain, neglecting the constant terms which fmecmsignificant for large n,
lim (aya) = 2*In(n)/log(n) = 21In(2) = 1.386...

What does this result teach us? It tells us thataiking the pains of always constructing a perjectl
balanced tree instead of the random tree, we ceuilvays provided that all keys are looked up with
equal probability -- expect an average improvenietite search path length of at most 39%. Emphissis
to be put on the word average, for the improvernasny of course be very much greater in the unhappy
case in which the generated tree had completelgragted into a list, which, however, is very ugelljk

to occur. In this connection it is noteworthy thia¢ expected average path length of the random tree
grows also strictly logarithmically with the numbafrits nodes, even though the worst case pathtteng
grows linearly.

The figure of 39% imposes a limit on the amounadditional effort that may be spent profitably arya
kind of reorganization of the tree's structure upmsertion of keys. Naturally, the ratio betweer th
frequencies of access (retrieval) of nodes (infaion® and of insertion (update) significantly indloices
the payoff limits of any such undertaking. The lghhis ratio, the higher is the payoff of a
reorganization procedure. The 39% figure is lowugfothat in most applications improvements of the
straight tree insertion algorithm do not pay offass the number of nodes and the access vs. orserti
ratio are large.

45. Balanced Trees

From the preceding discussion it is clear that rgertion procedure that always restores the trees'
structure to perfect balance has hardly any chahteing profitable, because the restoration ofgquer
balance after a random insertion is a fairly irattéc operation. Possible improvements lie in the
formulation of less strict definitions of balan&uch imperfect balance criteria should lead to Emnipee
reorganization procedures at the cost of only ghtldeterioration of average search performance On
such definition of balance has been postulated dsigon-Velskii and Landis [4-1]. The balance criter

is the following:

A tree isbalancedif and only if for every node the heights of igotsubtrees differ by at most 1.

Trees satisfying this condition are often called LAlvees (after their inventors). We shall simphyl ca
them balanced trees because this balance critegipears a most suitable one. (Note that all péyfect
balanced trees are also AVL-balanced.)

The definition is not only simple, but it also Isaih a manageable rebalancing procedure and aagaver
search path length practically identical to thathaf perfectly balanced tree. The following operatican
be performed on balanced trees in O(log n) unitewd, even in the worst case:

1. Locate a node with a given key.
2. Insert a node with a given key.
3. Delete the node with a given key.

These statements are direct consequences of aethgmoved by Adelson-Velskii and Landis, which
guarantees that a balanced tree will never be mnimae 45% higher than its perfectly balanced
counterpart, no matter how many nodes there awe llenote the height of a balanced tree with resod
by hy(n), then

log(n+1) < RB(n) < 1.4404*log(n+2) - 0.328
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The optimum is of course reached if the tree i$gudly balanced for n = 2k-1. But which is the stture

of the worst AVL-balanced tree? In order to fitg tmaximum height h of all balanced trees with n
nodes, let us consider a fixed height h and trgotestruct the balanced tree with the minimum nunatber
nodes. This strategy is recommended because, the inase of the minimal height, the value can be
attained only for certain specific valuesrofLet this tree of height be denoted by, Clearly, TO is the
empty tree, and T1 is the tree with a single ndaerder to construct the trel, for h > 1, we will
provide the root with two subtrees which again haweinimal number of nodes. Hence, the subtrees are
also T's. Evidently, one subtree must have heightand the other is then allowed to have a height of
one less, i.eh-2. Figure 4.30 shows the trees with height 2, 3, 4n8ince their composition principle
very strongly resembles that of Fibonacci numbtiiesy are calledribonacci-treeqsee Fig. 4.30). They
are defined as follows:

1.The empty tree is the Fibonacci-tree of height 0

2.A single node is the Fibonacci-tree of height 1.

3.1f Ty.p and T, are Fibonacci-trees of heights h-1 and h-2, then
Th=<Th1 X, Tho> is a Fibonacci-tree.

4. No other trees are Fibonacci-trees.

Fig. 4.30. Fibonacci-trees of height 2, 3, and 4
The number of nodes of,Ts defined by the following simple recurrence tiela:

No=0, =1
Np=Np1+ 1+ N

The N are those numbers of nodes for which the worst ¢agper limit of h) can be attained, and they
are called_eonardo numbers.

451. Balanced Treelnsertion

Let us now consider what may happen when a new isadserted in a balanced tree. Given a root In wit
the left and right subtrees L and R, three casest fme distinguished. Assume that the new node is
inserted in L causing its height to increase by 1.

1. h = hg: Land R become of unequal height, but the balamiterion is not violated.
2. h <hg: Land R obtain equal height, i.e., the balareedven been improved.
3. h > hg: the balance criterion is violated, and the treest be restructured.

Consider the tree in Fig. 4.31. Nodes with keys@ &1 may be inserted without rebalancing; the tree
with root 10 will become one-sided (case 1); the eovith root 8 will improve its balance (case 2).
Insertion of nodes 1, 3, 5, or 7, however, requstdssequent rebalancing.
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Fig. 4.31. Balanced tree

Some careful scrutiny of the situation reveals thate are only two essentially different constalles
needing individual treatment. The remaining onesla derived by symmetry considerations from those
two. Case 1 is characterized by inserting keys 3 iarthe tree of Fig. 4.31, case 2 by insertingeso5 or

7.

The two cases are generalized in Fig. 4.32 in whiciangular boxes denote subtrees, and the height
added by the insertion is indicated by crossespinransformations of the two structures restbie t
desired balance. Their result is shown in Fig. 4/33e that the only movements allowed are those
occurring in the vertical direction, whereas th&atree horizontal positions of the shown nodes and
subtrees must remain unchanged.

- % ja\

Fig. 4.32. Imbalance resulting from insertion

Fig. 4.33. Restoring the balance

An algorithm for insertion and rebalancing critigatiepends on the way information about the tree's
balance is stored. An extreme solution lies in kegpalance information entirely implicit in thee&r
structure itself. In this case, however, a nodalarite factor must be rediscovered each timeafféxted
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by an insertion, resulting in an excessively higerbead. The other extreme is to attribute an eiiyli
stored balance factor to every node. The definitibtihe type Node is then extended into

TYPE Node = POINTER TO RECORD
key, count, bal: INTEGER; (*bal=-1, 0, +1%)
left, right: Node
END

We shall subsequently interpret a node's balaraterfas the height of its right subtree minus thiglt
of its left subtree, and we shall base the reguléifgorithm on this node type. The process of node
insertion consists essentially of the followingeirconsecutive parts:

1. Follow the search path until it is verified thia key is not already in the tree.
2. Insert the new node and determine the resubi@ignce factor.
3. Retreat along the search path and check thadeafactor at each node. Rebalance if necessary.

Although this method involves some redundant cherKonce balance is established, it need not be
checked on that node's ancestors), we shall fitstr@ to this evidently correct schema becausanitbe
implemented through a pure extension of the alrezxdgblished search and insertion procedures. This
procedure describes the search operation neededcht single node, and because of its recursive
formulation it can easily accommodate an additi@pedration on the way back along the search path. A
each step, information must be passed as to whetheot the height of the subtree (in which the
insertion had been performed) had increased. Weftire extend the procedure's parameter list by the
Boolean h with the meaning the subtree height iia®ased. Clearly, h must denote a variable pasamet
since it is used to transmit a result.

Assume now that the process is returning to a q@dé&om the left branch (see Fig. 4.32), with the
indication that it has increased its height. We nowst distinguish between the three conditions
involving the subtree heights prior to insertion:

1. h <hg, p.bal =+1, the previous imbalance at p has legeilibrated.
2.h =hg, p.bal= 0, the weight is now slanted to the left
3.h >hg, p.bal=-1, rebalancing is necessary.

In the third case, inspection of the balance facofahe root of the left subtree (say, pl.bal) datees
whether case 1 or case 2 of Fig. 4.32 is predetital node has also a higher left than right etthen
we have to deal with case 1, otherwise with cag€@nvince yourself that a left subtree with a baka
factor equal to O at its root cannot occur in ttase.) The rebalancing operations necessary arelgnt
expressed as sequences of pointer reassignmerfégt Irpointers are cyclically exchanged, resultimg
either a single or a double rotation of the twdhoee nodes involved. In addition to pointer ratatithe
respective node balance factors have to be updaleddetails are shown in the search, insertiod, an
rebalancing procedures.



Fig. 4.34. Insertions in balanced tree

The working principle is shown by Fig. 4.34. Comsithe binary tree (a) which consists of two nodes
only. Insertion of key 7 first results in an unbveded tree (i.e., a linear list). Its balancing ives a RR
single rotation, resulting in the perfectly balash¢e=e (b). Further insertion of nodes 2 and lltéswan
imbalance of the subtree with root 4. This subfieedbalanced by an LL single rotation (d). The
subsequent insertion of key 3 immediately offshts lbalance criterion at the root node 5. Balance is
thereafter reestablished by the more complicatedlB&ble rotation; the outcome is tree (e). The only
candidate for losing balance after a next insergomode 5. Indeed, insertion of node 6 must invibles
fourth case of rebalancing outlined below, the Rulale rotation. The final tree is shown in Fig.4(84

PROCEDURE search(x: INTEGER; VAR p: Node; VAR h: BCEAN);
VAR pl, p2: Node; (*~h*)
BEGIN
IF p = NIL THEN (*insert*)
NEW(p); h:= TRUE;
p.key = x; p.count := 1; p.left := NIL; p.righ= NIL; p.bal := 0
ELSIF p.key > x THEN
search(x, p.left, h);
IF h THEN (*left branch has grown*)
IF p.bal =1 THEN p.bal := 0; h := FALSE
ELSIF p.bal =0 THEN p.bal :=-1
ELSE (*bal = -1, rebalance*) pl := p.left;
IF pl.bal=-1 THEN (*single LL rotati®t)
p.left := pl.right; pl.right ;= p;
p.bal:=0;p:=pl
ELSE (*double LR rotation*) p2 := pZ1.higy
pl.right ;= p2.left; p2.left .= p1;
p.left := p2.right; p2.right := p;
IF p2.bal=-1 THEN p.bal := 1 ELSBal..:= 0 END ;
IF p2.bal = +1 THEN pl.bal :=-1 ELBEbal ;=0 END ;
p :=p2
END ;
p.bal :=0; h := FALSE
END
END
ELSIF p.key < x THEN
search(x, p.right, h);
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IF h THEN (*right branch has grown*)
IF p.bal =-1 THEN p.bal := 0; h := FALSE
ELSIF p.bal =0 THEN p.bal :=1
ELSE (*bal = +1, rebalance*) pl := p.right;
IF pl.bal=1THEN (*single RR rotation
p.right ;= pl.left; pl.left := p;
p.bal:=0;p:=pl
ELSE (*double RL rotation*) p2 := pltef
pl.left := p2.right; p2.right := p1;
p.right ;= p2.left; p2.left := p;
IF p2.bal = +1 THEN p.bal := -1 ELSIbal := 0 END ;
IF p2.bal=-1 THEN pl.bal:= 1 ELSEmal := 0 END ;
p :=p2
END ;
p.bal :=0; h := FALSE
END
END
ELSE INC(p.count)
END
END search

Two particularly interesting questions concernirige tperformance of the balanced tree insertion
algorithm are the following:

1.If all n! permutations of n keys occur with efjpaobability, what is the expected height of the
constructed balanced tree?

2.What is the probability that an insertion regsirebalancing?

Mathematical analysis of this complicated algoritisnstill an open problem. Empirical tests supploet
conjecture that the expected height of the balatreedthus generated is h = log(n)+c, where csmall
constant (¢ 0.25). This means that in practice the AVL-balahtree behaves as well as the perfectly
balanced tree, although it is much simpler to na@ntEmpirical evidence also suggests that, on the
average, rebalancing is necessary once for appatedynevery two insertions. Here single and double
rotations are equally probable. The example of Eigg4 has evidently been carefully chosen to
demonstrate as many rotations as possible in amaminumber of insertions.

The complexity of the balancing operations suggeékts balanced trees should be used only if
information retrievals are considerably more freguban insertions. This is particularly true besathe
nodes of such search trees are usually implemegtedensely packed records in order to economize
storage. The speed of access and of updating thadeafactors -- each requiring two bits only -- is
therefore often a decisive factor to the efficien€the rebalancing operation. Empirical evaluatishow
that balanced trees lose much of their appeallit tiecord packing is mandatory. It is indeed diffi to
beat the straightforward, simple tree insertioroatgm.

45.2. Balanced Tree Deletion

Our experience with tree deletion suggests thdhéncase of balanced trees deletion will also beemo
complicated than insertion. This is indeed truthaalgh the rebalancing operation remains essentieg|
same as for insertion. In particular, rebalancingsists again of either single or a double rotatioh
nodes.

The basis for balanced tree deletion is the orglitr@e deletion algorithm. The easy cases areirt@m
nodes and nodes with only a single descendarttelfibde to be deleted has two subtrees, we wilhaga
replace it by the rightmost node of its left subtrds in the case of insertion, a Boolean variable
parameter h is added with the meaning “the heiftthe subtree has been reduced”. Rebalancing has to
be considered only when h is true. h is made tpandinding and deleting a node, or if rebalandiaglf
reduces the height of a subtree. We now introdiegwo (symmetric) balancing operations in the form
of procedures, because they have to be invoked rinone than one point in the deletion algorithm.éNot
thatbalancelLis applied when the lefhalanceRafter the right branch had been reduced in height.



Fig. 4.35. Deletions in balanced tree

The operation of the procedure is illustrated ig. Bi.35. Given the balanced tree (a), successilatiate

of the nodes with keys 4, 8, 6, 5, 2, 1, and 7ltedu the trees (b) ... (h). Deletion of key 4simple in
itself, because it represents a terminal node. Kewét results in an unbalanced node 3. Its retwita
operation invoves an LL single rotation. Rebalagdiecomes again necessary after the deletion @& nod
6. This time the right subtree of the root (7)a@balanced by an RR single rotation. Deletion ofen@ad
although in itself straightforward since it hasyalsingle descendant, calls for a complicated Biibde
rotation. The fourth case, an LR double rotatisrijrially invoked after the removal of node 7, whiat
first was replaced by the rightmost element ofefssubtree, i.e., by the node with key 3.

PROCEDURE balanceL(VAR p: Node; VAR h: BOOLEAN);
VAR p1, p2: Node;

BEGIN (*h; left branch has shrunk*)
IF p.bal=-1 THEN p.bal :=0
ELSIF p.bal =0 THEN p.bal :=1; h := FALSE
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ELSE (*bal = 1, rebalance*) pl := p.right;
IF pl.bal>= 0 THEN (*single RR rotation*)
p.right ;= pl.left; pl.left ;= p;
IF pl.bal =0 THEN p.bal := 1; pl.bal & h := FALSE
ELSE p.bal :=0; pl.bal:=0
END ;
p:=pl
ELSE (*double RL rotation*)
p2 = pl.left;
pl.left := p2.right; p2.right := p1;
p.right ;= p2.left; p2.left ;= p;
IF p2.bal = +1 THEN p.bal ;= -1 ELSE p.baD END ;
IF p2.bal =-1 THEN pl.bal := 1 ELSE p1.=0 END ;
p :=p2;p2.bal:=0
END
END
END balanceL;

PROCEDURE balanceR(VAR p: Node; VAR h: BOOLEAN);
VAR p1, p2: Node;
BEGIN (*h; right branch has shrunk®*)
IF p.bal=1THEN p.bal :=0
ELSIF p.bal =0 THEN p.bal :=-1; h := FALSE
ELSE (*bal = -1, rebalance*) pl := p.left;
IF pl.bal <=0 THEN (*single LL rotation*)
p.left := pl.right; pl.right := p;
IF pl.bal = 0 THEN p.bal := -1; pl.ballzh := FALSE
ELSE p.bal :=0; pl.bal:=0
END ;
p:=pl
ELSE (*double LR rotation*)
p2 = pl.right; b2 := p2.bal,
pl.right ;= p2.left; p2.left := p1;
p.left := p2.right; p2.right := p;
IF p2.bal =-1 THEN p.bal := 1 ELSE p.bab END ;
IF p2.bal = +1 THEN pl.bal := -1 ELSE pdl.bc 0 END ;
p :=p2;p2.bal:=0
END
END
END balanceR;

PROCEDURE delete(x: INTEGER; VAR p: Node; VAR h: BOEAN);
VAR q: Node;

PROCEDURE del(VAR r: Node; VAR h: BOOLEAN);
BEGIN (*~h*)
IF r.right # NIL THEN
del(r.right, h);
IF h THEN balanceR(r, h) END
ELSE g.key :=r.key, g.count :=r.count;
g:=r;r:=r.left; h:= TRUE
END
END del;

BEGIN (*~h*)
IF p = NIL THEN (*key not in tree*)
ELSIF p.key > x THEN
delete(x, p.left, h);
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IF h THEN balanceL(p, h) END

ELSIF p.key < x THEN
delete(x, p.right, h);
IF h THEN balanceR(p, h) END

ELSE (*delete p*) q :=p;
IF g.right = NIL THEN p :=qg.left; h ;== TRUE
ELSIF q.left = NIL THEN p := g.right; h := TRUE
ELSE del(q.left, h);

IF h THEN balanceL(p, h) END

END

END

END delete

Fortunately, deletion of an element in a balanced tan also be performed with -- in the worst case
O(log n) operations. An essential difference betwdlee behaviour of the insertion and deletion
procedures must not be overlooked, however. Whénsastion of a single key may result in at most on
rotation (of two or three nodes), deletion may rexa rotation at every node along the search path.
Consider, for instance, deletion of the rightmastenof a Fibonacci-tree. In this case the delatioany
single node leads to a reduction of the heighthef tree; in addition, deletion of its rightmost eod
requires the maximum number of rotations. This éfee represents the worst choice of node in the
worst case of a balanced tree, a rather unluckyamation of chances. How probable are rotatiorsn th

in general?

The surprising result of empirical tests is thateveas one rotation is invoked for approximatelyrgve
two insertions, one is required for every five deles only. Deletion in balanced trees is therefaveut
as easy -- or as complicated -- as insertion.

4.6. Optimal Search Trees

So far our consideration of organizing search thessbeen based on the assumption that the fregiaénc
access is equal for all nodes, that is, that aftlee equally probable to occur as a search anmgiifieis

is probably the best assumption if one has no édesccess distribution. However, there are casesy(t
are the exception rather than the rule) in whidarmation about the probabilities of access tovidiial
keys is available. These cases usually have thedeaistic that the keys always remain the sarae, i
the search tree is subjected neither to insertmmndeletion, but retains a constant structure. picgl
example is the scanner of a compiler which deteemifor each word (identifier) whether or not itais
keyword (reserved word). Statistical measuremewts bundreds of compiled programs may in this case
yield accurate information on the relative freques®of occurrence, and thereby of access, of iddali
keys.

Assume that in a search tree the probability wittichv node i is accessed is
Pr{x =k} =pi (S:1<i<n:p)=1

We now wish to organize the search tree in a way/ tte total number of search steps -- counted over
sufficiently many trials -- becomes minimal. Foistpurpose the definition of path length is modifley

(1) attributing a certain weight to each node agpdd) assuming the root to be at level 1 (instef@)p
because it accounts for the first comparison alihegsearch path. Nodes that are frequently accessed
become heavy nodes; those that are rarely visgedrbe light nodes. The (internal) weighted patlgtien

is then the sum of all paths from the root to aamtte weighted by that node's probability of access.

P =S:1<i<n:p*h;

h; is the level of node i. The goal is how to minimithe weighted path length for a given probability
distribution. As an example, consider the set gBkg, 2, 3, with probabilities of access91/7, p = 2/7,
and p = 4/7. These three keys can be arranged in fiferdnt ways as search trees (see Fig. 4.36).
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g A,

Fig. 4.36. The search trees with 3 nodes
The weighted path lengths of trees (a) to (e) ampaited according to their definition as
P(@) =11/7, P(b)=12/7, P(c)=12/7, P(dBs#, P(e)=17/7

Hence, in this example, not the perfectly balaniced (c), but the degenerate tree (a) turns olieto
optimal.

The example of the compiler scanner immediatelygssts that this problem should be viewed under a
slightly more general condition: words occurringtlie source text are not always keywords; as aematt
of fact, their being keywords is rather the exaaptiFinding that a given wollis not a key in the search
tree can be considered as an access to a hypatHstiecial node" inserted between the next lowmer a
next higher key (see Fig. 4.19) with an associatddrnal path length. If the probability of a search
argumentx lying between the two keyls and ki.; is also known, this information may considerably
change the structure of the optimal search tre@célewe generalize the problem by also considering
unsuccessful searches. The overall average weiglatbdength is now

P= G:1<i<n:p*h)+(S:1<i<m:qg*hY)
where
(S:1<i<n:p+@S:l<i<m:q) = 1.

and where, his the level of the (internal) node i angi&'the level of the external node j. The average
weighted path length may be called the cost ofg&ch tree, since it represents a measure for the
expected amount of effort to be spent for searchiihg search tree that requires the minimal cosingm

all trees with a given set of keysand probabilities and qis calledthe optimal tree
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Fig. 4.37. Search tree with associated accessdneips

For finding the optimal tree, there is no needdquire that the p's and g's sum up to 1. In fhesd
probabilities are commonly determined by experimeint which the accesses to nodes are counted.
Instead of using the probabilities pi and qj, wdl subsequently use such frequency counts and denot
them by

a = number of times the search argument x equals k
b; = number of times the search argument x lies betviseand k.,

By convention, pis the number of times that x is less thanaad h is the frequency of x being greater
than k (see Fig. 4.37). We will subsequently use P tootteithe accumulated weighted path length
instead of the average path length:

P= Si:l<i<n:gh)+Si:1<i<m:b*h)

Thus, apart from avoiding the computation of thebabilities from measured frequency counts, we gain
the further advantage of being able to use inteigetead of fractions in our search for the optitned.

Considering the fact that the number of possibidigarations of n nodes grows exponentially withtheg
task of finding the optimum seems rather hopelessidrge n. Optimal trees, however, have one
significant property that helps to find them: &leir subtrees are optimal too. For instance, ifttee in

Fig. 4.37 is optimal, then the subtree with keysukd k is also optimal as shown. This property suggests
an algorithm that systematically finds larger aadyér trees, starting with individual nodes as teatl
possible subtrees. The tree thus grows from theeteto the root, which is, since we are used twitigh
trees upside-down, the bottom-up direction [4-6].

The equation that is the key to this algorithmasikd as follows: Let P be the weighted path lerajta
tree, and let Pand R be those of the left and right subtrees of itg.rGtearly, P is the sum of Rnd R,
and the number of times a search travels on théolelge root, which is simply the total number W of
search trials. We call W the weight of the treg al¢erage path length is then P/W.

P =R+W+HR

W=@Gi:1<i<n:a@+@Si:1<i<m:h)
These considerations show the need for a denotafitimee weights and the path lengths of any subtree
consisting of a number of adjacent keys. Leb& the optimal subtree consisting of nodes wityska;,

Kis2, ... , k. Then let wij denote the weight and lgtdenote the path length of TClearly P = p,and W =
Wy, These quantities are defined by the followingireence relations:
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wi =D (0<i<n)

Wij =W, tagt+h O<i<j<n)

pi =W (0<i<n)

Pi =wj+ MINK: i <k<j:(p1+pg) (O<i<k<j<n)

The last equation follows immediately from the digfbons of P and of optimality. Since there are
approximately 2 values p. and because its definition calls for a choice ragnall cases such that O < j-i

< n, the minimization operation will involve approxitely /6 operations. Knuth pointed out that a
factor n can be saved by the following consideratiwhich alone makes this algorithm usable for
practical purposes.

Let r; be a value of k which achieves the minimum fgrIpis possible to limit the search fof to a
much smaller interval, i.e., to reduce the numbié¢he j-i evaluation steps. The key is the obséovathat

if we have found the root rij of the optimal suletrg, then neither extending the tree by adding a mtde
the right, nor shrinking the tree by removing &firhost node ever can cause the optimal root toentov
the left. This is expressed by the relation

lij1 <l <lisg,j

which limits the search for possible solutionsrpto the range;f; ... k1. This results in a total number
of elementary steps in the order &f n

We are now ready to construct the optimization réigon in detail. We recall the following definitisn
which are based on optimal tregscbnsisting of nodes with keys k... k.

1.3 the frequency of a search far k

2.Dh: the frequency of a search argument x betweandkk, ;.
3. w;: the weight of T.

4.p;: the weighted path length of.T

5.1 the index of the root of;T

We declare the following arrays:

a:  ARRAY n+1 OF INTEGER; (*a[0] not used*)
b:  ARRAY n+l OF INTEGER;
p.w,r: ARRAY n+1, n+1 OF INTEGER;

Assume that the weights;mave been computed from a and b in a straightiahwey. Now consider w
as the argument of the proced@ptTreeto be developed and consider r as its result,usecadescribes
the tree structure completely. p may be considarethtermediate result. Starting out by considetirg
smallest possible subtrees, namely those consisfimp nodes at all, we proceed to larger and targe
trees. Let us denote the width j-i of the subtrgdyrh. Then we can trivially determine the valuggop

all trees with h = 0 according to the definitionpyf

FORi:= 0 TO n DO pli,i] := b[i] END

In the case h = 1 we deal with trees consisting single node, which plainly is also the root (Be&p
4.38).

FORi:=0TOn-1DO
j:= i1 plij] = wlijl + plii] + phil; L] =]
END
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Fig. 4.38. Optimal search tree with single node

Note that i denotes the left index limit and j tight index limit in the considered treg.TFor the cases h
> 1 we use a repetitive statement with h rangiogf2 to n, the case h = n spanning the entireliggeln
each case the minimal path length gnd the associated root index are determined by a simple
repetitive statement with an index k ranging overinterval given for;t

FORh:=2TOnDO
FORi:=0TO n-h DO
ji=i+h;
find k and min = MIN k: i <k <j: ({R1 + pg) such thatif.s <K < fuy;
p[i,j] := min + w[ij]; r[i,j] :=k
END
END

The details of the refinement of the statementdtics can be found in Program 4.6. The averagle pat
length of T, is now given by the quotieng gw, ,, and its root is the node with indey,r

Let us now describe the structure of the progranbegodesigned. Its two main components are the
procedures to find the optimal search tree, givareight distribution w, and to display the treeeagithe
indices r. First, the counts a and b and the kegsemd from an input source. The keys are actunally
involved in the computation of the tree structuhey are merely used in the subsequent displakieof t
tree. After printing the frequency statistics, tpgram proceeds to compute the path length of the
perfectly balanced tree, in passing also determitire roots of its subtrees. Thereafter, the awerag
weighted path length is printed and the tree igldiged.

In the third part, procedure OptTree is activatearider to compute the optimal search tree; thereaf
the tree is displayed. And finally, the same proced are used to compute and display the optireal tr
considering the key frequencies only, ignoring fileguencies of non-keys. To summarize, the follgwin
are the global constants and variables:

CONST N =100; (*max no. of keywords*)
WordLen = 16; (*max keyword length*)

VAR key: ARRAY N+1, WordLen OF CHAR;
a, b: ARRAY N+1 OF INTEGER;
p, w, r: ARRAY N+1, N+1 OF INTEGER;

PROCEDURE BalTree(, j: INTEGER): INTEGER;
VAR k: INTEGER,;
BEGIN k := (i+j+1) DIV 2; 1fi, ] :=k;
IFi>=) THEN RETURN O
ELSE RETURN BalTree(i, k-1) + BalTree(kHW[i, j]
END
END BalTree;
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PROCEDURE ComputeOptTree(n: INTEGER);

VAR X, min, tmp: INTEGER,;
i, j, k, h, m: INTEGER,;

BEGIN (*argument: W, results: p, r*)
FORi:=0TO nDO p[i,i]:=0 END ;
FORi:=0TO n-1 DO

j o= +1pli, = wii, ] iy 1=
END ;
FORh:=2TOnDO
FORi:=0 TO n-h DO
j =i+h; m:=r[i, j-1]; min := p[i, m-1} p[m, j];
FOR k :=m+1 TO 1[i+1, j] DO
tmp := p[i, k-1]; x := p[K, j] + tmp;
IF x < min THEN m := k; min := x END
END ;
pli, i = min + w(i, jI; r[i, j] := m
END
END
END ComputeOptTree;

PROCEDURE WriteTree(], j, level: INTEGER);
VAR k: INTEGER; (*uses global writer W*)
BEGIN
IFi<jTHEN
WriteTree(i, i, j]-1, level+1);
FOR k :=1 TO level DO Texts.Write(W, TAB) EN
Texts.WriteString(W, key[r[i, jI]); Texts.WaLn(W);
WriteTree(r[i, ], j, level+1)
END
END WriteTree;

PROCEDURE Find(VAR S: Texts.Scanner);
VAR i, j, n: INTEGER; (*uses global writer W*)
BEGIN Texts.Scan(S); b[0] := SHORT(S.i);

n = 0; Texts.Scan(S); (*input a, key, b*)
WHILE S.class = Texts.Int DO

INC(n); a[n] := SHORT(S.i); Texts.Scan(S); COBYs, key[n]);

Texts.Scan(S); b[n] := SHORT(S.i); Texts.Scan(S
END ;
(*compute w from a and b*)
FORi:=0TO nDO

w(i, i] := b[i];

FORj:=i+1 TOn DO

Wi, ] := w(i, ]-1] + a[j] + b[j]

END
END ;
Texts.WriteString(W, "Total weight = ); Texts.Waint(W, w[0, n], 6); Texts.WriteLn(W);
Texts.WriteString(W, "Pathlength of balanced tre®;
Texts.Writelnt(W, BalTree(0, n), 6); Texts.WriteQW);
WriteTree(0, n, 0); Texts.WriteLn(W);
ComputeOptTree(n);
Texts.WriteString(W, "Pathlength of optimal tre€);
Texts.Writelnt(W, p[0, n], 6); Texts.WriteLn(W);
WriteTree(0, n, 0); Texts.WriteLn(W);
FORi:=0TOnDO

wl[i, i]:=0;



FORj:=i+1 TO n DO wii, j] :=w[i, j-1] + 3] END
END ;
ComputeOptTree(n);
Texts.WriteString(W, "optimal tree not considerin”); Texts.WriteLn(W);
WriteTree(0, n, 0); Texts.WriteLn(W)
END Find;

As an example, let us consider the following ingata of a tree with 3 keys:
20 1 Albert 10 2 Ernst 1 5 Peter 1
bo =20

=1 key = Albert b =10
=2 key = Ernst b=1
=4 key = Peter b=1

The results of procedukénd are shown in Fig. 4.40 and demonstrate that tiuetstes obtained for the
three cases may differ significantly. The total gieiis 40, the pathlength of the balanced tree3jsaid
that of the optimal tree is 66.

balanced tree optimal tree not considering key misses
Albert — Albert ,—Albert
— Ernst I—ErTst ,—Ernst
|—Peter Peter —— Peter

Fig. 4.40. The 3 trees generated by the Optimat precedure (NEW FIGURE!)

It is evident from this algorithm that the effoct determine the optimal structure is of the orden®
also, the amount of required storage is of therantleThis is unacceptable if n is very large. Algamith
with greater efficiency are therefore highly ddslea One of them is the algorithm developed by Hd a
Tucker [4-5] which requires only O(n) storage ang’®g(n)) computations. However, it considers only
the case in which the key frequencies are zerq, Wwlere only the unsuccessful search trials are
registered. Another algorithm, also requiring Ogtgrage elements and O(n*log(n)) computations was
described by Walker and Gotlieb [4-7]. Instead rgfng to find the optimum, this algorithm merely
promises to yield a nearly optimal tree. It carrdffere be based on heuristic principles. The bidsia is

the following.

Consider the nodes (genuine and special nodesy lstributed on a linear scale, weighted by their
frequencies (or probabilities) of access. Then fimelnode which is closest to the center of gravityis
node is called theentroid and its index is

Si:1<i<n:i*a)+((S:1<i<m:i*b) /W

rounded to the nearest integer. If all nodes haygleweight, then the root of the desired optimeét
evidently coincides with the centroid Otherwisese-the reasoning goes -- it will in most casesnbthé
close neighborhood of the centroid. A limited sharcthen used to find the local optimum, whereafte
this procedure is applied to the resulting two sedst. The likelihood of the root lying very closethe
centroid grows with the size n of the tree. As sasrthe subtrees have reached a manageable gire, th
optimum can be determined by the above exact #gori

47.B-Trees

So far, we have restricted our discussion to tie@ghich every node has at most two descendaatsta.
binary trees. This is entirely satisfactory if, fostance, we wish to represent family relationshipth a
preference to the pedigree view, in which everggpelis associated with his parents. After all, ne bas
more than two parents. But what about someone wéiens the posterity view? He has to cope with the
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fact that some people have more than two childaed, his trees will contain nodes with many branches
For lack of a better term, we shall call themltiwaytrees.

Of course, there is nothing special about suchcstres, and we have already encountered all the
programming and data definition facilities to capiéh such situations. If, for instance, an absoluper
limit on the number of children is given (whichadmittedly a somewhat futuristic assumption), tbea
may represent the children as an array componetfiteoffecord representing a person. If the number of
children varies strongly among different personswéwver, this may result in a poor utilization of
available storage. In this case it will be much enappropriate to arrange the offspring as a litisgr
with a pointer to the youngest (or eldest) offsgrassigned to the parent. A possible type defimitar

this case is the following, and a possible datzctire is shown in Fig. 4.43.

TYPE Person = POINTER TO RECORD

name: alfa;
sibling, offspring: Person
END
JOHN PETER
q
A 4
ALBERT MARY ROBERT CAROL CHRIS TINA
p [ ] g g
A 4 A 4
PAUL GEORGE PAMELA

Fig. 4.43. Multiway tree represented as binary tree

We now realize that by tilting this picture by 48gdees it will look like a perfect binary tree. Bhts
view is misleading because functionally the twaerefices have entirely different meanings. One lysual
dosen't treat a sibling as an offspring and getyawgunished, and hence one should not do so even i
constructing data definitions. This example cous de easily extended into an even more compticate
data structure by introducing more components ith ggerson's record, thus being able to represent
further family relationships. A likely candidateathcannot generally be derived from the sibling and
offspring references is that of husband and wifeex@n the inverse relationship of father and mothe
Such a structure quickly grows into a complex retetl data bank, and it may be possible to mapesatv
trees into it. The algorithms operating on suchcstires are intimately tied to their data defimtpand it
does not make sense to specify any general ruleglety applicable techniques.

However, there is a very practical area of appbcadf multiway trees which is of general interestis

is the construction and maintenance of large-ssa@ch trees in which insertions and deletions are
necessary, but in which the primary store of a agepis not large enough or is too costly to beldse
long-time storage.

Assume, then, that the nodes of a tree are toobedsbn a secondary storage medium such as atdisk s
Dynamic data structures introduced in this chagterparticularly suitable for incorporation of sedary
storage media. The principal innovation is meréigt tpointers are represented by disk store addresse
instead of main store addresses. Using a binaeyftrea data set of, say, a million items, requieshe
average approximately log 4(i.e. about 20) search steps. Since each stepimaMves a disk access
(with inherent latency time), a storage organizatising fewer accesses will be highly desirables Th
multiway tree is a perfect solution to this probldfran item located on a secondary store is aecess
entire group of items may also be accessed withauth additional cost. This suggests that a tree be
subdivided into subtrees, and that the subtreesepresented as units that are accessed all tog¥tee
shall call these subtregsages Figure 4.44 shows a binary tree subdivided in&mgs, each page
consisting of 7 nodes.
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Fig. 4.44. Binary tree subdivided into pages

The saving in the number of disk accesses -- eadge jaccess now involves a disk access -- can be
considerable. Assume that we choose to place 166snon a page (this is a reasonable figure); then t
million item search tree will on the average requinly logoq10°) (i.e. about 3) page accesses instead of
20. But, of course, if the tree is left to growrandom, then the worst case may still be as lasgkdh It

is plain that a scheme for controlled growth is@trmandatory in the case of multiway trees.

4.7.1. Multiway B-Trees

If one is looking for a controlled growth criteriothe one requiring a perfect balance is quickly
eliminated because it involves too much balanciveyteead. The rules must clearly be somewhat relaxed
A very sensible criterion was postulated by R. Baged E.M. McCreight [4.2] in 1970: every page
(except one) contains between n and 2n nodesdarea constant n. Hence, in a tree with N items and
maximum page size of 2n nodes per page, the wast pequires logn N page accesses; and page
accesses clearly dominate the entire search effareover, the important factor of store utilizatis at
least 50% since pages are always at least half Wilh all these advantages, the scheme involves
comparatively simple algorithms for search, insertiand deletion. We will subsequently study them i
detail.

The underlying data structures are called B-traad, have the following characteristics; n is saidé
theorder of the B-tree.

1.Every page contains at most 2n items (keys.)
2.Every page, except the root page, containsat teitems.

3.Every page is either a leaf page, i.e. has socahelants, or it has m+1 descendants, where m is it
number of keys on this page.

4. All leaf pages appear at the same level.

2 5 7 8 | [13 14 15 18] [22 24 | [26 27 28 | [32 35 38 | [41 42 45 46

Fig. 4.45. B-tree of order 2

Figure 4.45 shows a B-tree of order 2 with 3 lev&lspages contain 2, 3, or 4 items; the excepiiotine

root which is allowed to contain a single item oyl leaf pages appear at level 3. The keys appear
increasing order from left to right if the B-treesqueezed into a single level by inserting theatetants

in between the keys of their ancestor page. Thisngement represents a natural extension of binary



search trees, and it determines the method of siagran item with given key. Consider a page of the
form shown in Fig. 4.46 and a given search argumeAssuming that the page has been moved into the
primary store, we may use conventional search mstlammong the keys; k.. k. If m is sufficiently
large, one may use binary search; if it is ratineals an ordinary sequential search will do. (Ntbiat the
time required for a search in main store is propakelligible compared to the time it takes to mtwe
page from secondary into primary store.) If tharek is unsuccessful, we are in one of the follgwin
situations:

1.k <x <k, for 1 <i<m The search continues on page p

2. kn<x The search continues on pagé.p
3.x<lk The search continues on page.p
Po ki p1 ko p2 S Pm1 Km  Pm

oo b

Fig. 4.46. B-tree page with m keys

If in some case the designated pointer is NIL, ifethere is no descendant page, then there igeno
with key x in the whole tree, and the search isteated.

Surprisingly, insertion in a B-tree is comparatiwveimple too. If an item is to be inserted in a@agth

m < 2n items, the insertion process remains cadnstilao that page. It is only insertion into arealtty

full page that has consequences upon the treetwteuand may cause the allocation of new pages. To
understand what happens in this case, refer tod4g., which illustrates the insertion of key 22aifB-

tree of order 2. It proceeds in the following steps

1.Key 22 is found to be missing; insertion in p&gis impossible because C is already full.

2.Page C is split into two pages (i.e., a new fageallocated).

3.The 2n+1 keys are equally distributed onto C@ndnd the middle key is moved up one level ih® t
ancestor page A.

Afo ] Af2 30 ]
[[7 10 15 18] [26 30 35 40] 7 10 15 18] [22 26 | [35 40 |
B C B C D

Fig. 4.47. Insertion of key 22 in B-tree

This very elegant scheme preserves all the chaistiteproperties of B-trees. In particular, thditsp
pages contain exactly n items. Of course, the fiegeof an item in the ancestor page may againecaus
that page to overflow, thereby causing the sptjttim propagate. In the extreme case it may propagat
to the root. This is, in fact, the only way tha¢ tB-tree may increase its height. The B-tree has th
strange manner of growing: it grows from its leaupsvard to the root.

We shall now develop a detailed program from thelsichy descriptions. It is already apparent that a
recursive formulation will be most convenient besmwf the property of the splitting process to
propagate back along the search path. The genaratuse of the program will therefore be similar t
balanced tree insertion, although the details dferent. First of all, a definition of the pagestture has

to be formulated. We choose to represent the iterttee form of an array.

TYPE Page = POINTER TO PageDescriptor;

Item = RECORD key: INTEGER;
p: Page;
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count: INTEGER (*data*)
END ;

PageDescriptor= RECORD m: INTEGER; (* On.*2
pO: Page;
e: ARRAY 2*n OF Item
END

Again, the item componempuntstands for all kinds of other information that mazey associated with
each item, but it plays no role in the actual deamocess. Note that each page offers space fiei2s.
The field m indicates the actual number of itemsttoa page. As nx n (except for the root page), a
storage utilization of a least 50% is guaranteed.

The algorithm of B-tree search and insertion isnfolated below as a procedure caltsgrch Its main
structure is straightforward and similar to thattfoe balanced binary tree search, with the exaeptiat
the branching decision is not a binary choice.eladf the “within-page search” is represented asaryp
search on the array e of elements.

The insertion algorithm is formulated as a sepgveteedure merely for clarity. It is activated atearch
has indicated that an item is to be passed up @iréle (in the direction toward the root). Thist fac
indicated by the Boolean result parameter h; iia&s a similar role as in the algorithm for balahcee
insertion, where h indicates that the subtree hadvig. If h is true, the second result parameter, u,
represents the item being passed up. Note thatiorse start in hypothetical pages, namely, theetsd
nodes" of Fig. 4.19; the new item is immediatelgdhed up via the parameter u to the leaf page foiahc
insertion. The scheme is sketched here:

PROCEDURE search(x: INTEGER; a: Page; VAR h: BOONEAXAR u: Iltem);
BEGIN
IFa=NILTHEN (*x notin tree, insert*)
Assign x to item u, set h to TRUE, indicatthgt an item
u is passed up in the tree
ELSE
binary search for x in array a.e;
IF found THEN process data
ELSE search(x, descendant, h, u);
IF h THEN (*an item was passed up*)
IF no. of items on page a* < 2n THEN
insert u on page a" and set h tb$A
ELSE split page and pass middle itgm u
END
END
END
END
END search

If the paramerter h is true after the calkefirchin the main program, a split of the root pageetguested.
Since the root page plays an exceptional role,fghisess has to be programmed separately. It ¢onsis
merely of the allocation of a new root page anditsertion of the single item given by the paraereut
As a consequence, the new root page contains & siegn only. The details can be gathered from

Program 4.7, and Fig. 4.48 shows the result ofguBirogram 4.7 to construct a B-tree with the foltayv
insertion sequence of keys:

20; 40 10 30 15; 35 7 26 18 22; 5;424B327 8 32; 38 24 45 25;

The semicolons designate the positions of the srepsaken upon each page allocation. Insertichef
last key causes two splits and the allocation fettnew pages.



a)

b)
[10 15 | [30 40 |

)
[[7 10 15 18] [22 26 | [35 40 |

d) 10 20 30
[5 7 | [15 18 | [22 26 | [35 40 |

e) 10 20 30 40
[5 7 8 | [13715 18 | [22 26 27 ] [32 35 | [42 46
f)

5 7 8 | [13 15 18 ] [22 24 | [26 27 | [32 35 38 | [42 45 46

Fig. 4.48. Growth of B-tree of order 2

Since each activation of search implies one pagester to main store, k = IgiN) recursive calls are
necessary at most, if the tree contains N itemacklewe must be capable of accommodating k pages in
main store. This is one limiting factor on the paie 2n. In fact, we need to accommodate even more
than k pages, because insertion may cause pagiég@h occur. A corollary is that the root pagebest
allocated permanently in the primary store, becas®h query proceeds necessarily through the root

page.

Another positive quality of the B-tree organizatiisnits suitability and economy in the case of pure
sequential updating of the entire data base. Evagg is fetched into primary store exactly once.

Deletion of items from a B-tree is fairly straigbtward in principle, but it is complicated in tdetails.
We may distinguish two different circumstances:

1. The item to be deleted is on a leaf page; hemeimoval algorithm is plain and simple.

2.The item is not on a leaf page; it must be @by one of the two lexicographically adjaceeatris,
which happen to be on leaf pages and can easidgle¢ed.

In case 2 finding the adjacent key is analogodmtiing the one used in binary tree deletion. Wecédead
along the rightmost pointers down to the leaf pageeplace the item to be deleted by the rightntest

on P, and then reduce the size of P by 1. In asg,c¢aduction of size must be followed by a chddke
number of items m on the reduced page, because<ih, the primary characteristic of B-trees wolnéd
violated. Some additional action has to be takbis; inderflow condition is indicated by the Boolean
variable parameter h.

The only recourse is to borrow or annect an itesmfone of the neighboring pages, say from Q. Since
this involves fetching page Q into main store relatively costly operation -- one is tempted tdkenthe
best of this undesirable situation and to annegertitan a single item at once. The usual stratedy i
distribute the items on pages P and Q evenly om pages. This is callgghge balancing
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Of course, it may happen that there is no itemtéefie annected since Q has already reached itmalin
size n. In this case the total number of items ageg P and Q is 2n-1; we may merge the two pages in
one, adding the middle item from the ancestor pdid® and Q, and then entirely dispose of page @& Th
is exactly the inverse process of page splittirige process may be visualized by considering thetidal

of key 22 in Fig. 4.47. Once again, the removahefmiddle key in the ancestor page may causézis s
to drop below the permissible limit n, thereby rieiqpg that further special action (either balancing
merging) be undertaken at the next level. In thee@xe case page merging may propagate all the way u
to the root. If the root is reduced to size Osiitself deleted, thereby causing a reduction éntteight of
the B-tree. This is, in fact, the only way that-#&r& may shrink in height. Figure 4.49 shows tteglgal
decay of the B-tree of Fig. 4.48 upon the sequiethdietion of the keys

25 45 24; 38 32; 8 27 46 13 42; 5 22288 7 35 15;

The semicolons again mark the places where theshogpare taken, namely where pages are being
eliminated. The similarity of its structure to thdtbalanced tree deletion is particularly notewgrt

a)

[5 7 8 | [13 15 18 | [22 24 | [26 27 | [32 35 38 | [42 45 46
b) 10 22 30 40

[5 7 8 | [13 15 18 20] [26 27 | [32 35 38 ] [42 46

c) 10 22 30

[5 7 8 | [13 15 18 20] [26 27 | [35 40 42 46

d

[5 7 | [15 18 20 | [26 30 35 40

e)

[[7 10 | [20 30 35 40

f) 10 20 30 40

Fig. 4.49. Decay of B-tree of order 2
TYPE Page = POINTER TO PageRec;

Entry = RECORD
key: INTEGER; p: Page
END ;

PageRec = RECORD
m: INTEGER; (*no. of entries on page*)
pO: Page;
e: ARRAY 2*N OF Entry

END ;

VAR root: Page; W: Texts.Writer;
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PROCEDURE search(x: INTEGER; VAR p: Page; VAR kKTBRGER);
VAR, L, R: INTEGER; found: BOOLEAN; a: Page;
BEGIN a :=root; found := FALSE;
WHILE (a # NIL) & ~found DO
L:=0; R :=a.m; (*binary search*)
WHILE L<R DO
i :=(L+R) DIV 2;
IF x <= a.efil.key THEN R := i ELSE L := i+1 END
END ;
IF (R <a.m) & (a.e[R].key = x) THEN found := THJ
ELSIF R=0 THEN a:= a.p0 ELSE a:= a.e[R-1].p
END
END ;
p=ak:=R
END search;

PROCEDURE insert(x: INTEGER; a: Page; VAR h: BOOL¥A/AR v: Entry);
(*a # NIL. Search key x in B-tree with root a;
insert new item with key x. If an entry is to p&ssed up,
assign it to v. h := "tree has become higher"*)
VAR, L, R: INTEGER;
b: Page; u: Entry;
BEGIN (* ~h *)
IF a=NIL THEN v.key :=x; v.p :=NIL; h := TRUE
ELSE L :=0; R := a.m; (*binary search*)
WHILE L<R DO
i :=(L+R) DIV 2;
IF x <= a.efil.key THEN R := i ELSE L := i+1 END
END ;
IF (R <a.m) & (a.e[R].key = x) THEN (*found, dmthing*)
ELSE (*item not on this page*)
IFR=0THEN b :=a.p0 ELSE b := a.e[R-1].p END
insert(x, b, h, u);
IF h THEN (*insert u to the left of a.e[R]*)
IF a.m < 2*N THEN
h := FALSE;
FORi:=a.m TO R+1 BY -1 DO a.e][i] ;= a.e[ilEND ;
a.e[R] ;= u; INC(a.m)
ELSE NEW(b); (*overflow; split a into a,b andsign the middle entry to v*)
IF R <N THEN (*insert in left page a*)

v = a.e[N-1];
FORi:=N-1TO R+1 BY -1 DO a.e[i] := a.d[J-END ;
a.e[R] :=u;

FORi:=0TO N-1 DO b.e][i] := a.e[i+N] END
ELSE (*insert in right page b*)
DEC(R, N);
IFR=0THENVv:=u
ELSE v := a.e[N];
FORi:=0TO R-2 DO b.e[i] := a.e[i+N+1] EN

b.e[R-1]:=u
END ;
FORi:=R TO N-1 DO b.€[i] := a.e[i+N] END
END ;
am:=N;b.m:=N;b.p0:=v.p;v.p:=b

END
END



END
END
END insert;

PROCEDURE underflow(c, a: Page; s: INTEGER; VARBBRQOLEAN);
(*a = underflowing page, ¢ = ancestor page,
s = index of deleted entry in c*)
VAR b: Page;
i, k: INTEGER,;
BEGIN (*h & (a.m = N-1) & (c.e[s-1].p = a) *)
IF s <c.m THEN (*b := page to the right of a*)
b = c.e[s].p; k := (b.m-N+1) DIV 2; (*k = nofdtns available on page b*)
a.e[N-1] := c.e[s]; a.e[N-1].p := b.p0;
IF k >0 THEN (*balance by moving k-1 items frdnto a*)
FORi:=0TO k-2 DO a.e[i+N] := b.e[i] END ;
c.e[s] := b.e[k-1]; b.p0 :=c.e[s].p;
c.e[s].p := b; DEC(b.m, K);
FORi:=0TO b.m-1 DO b.€[i] := b.e[i+k] END ;
a.m := N-1+k; h := FALSE
ELSE (*merge pages a and b, discard b*)
FORi:=0TO N-1 DO a.e[i+N] := b.e[i] END ;
DEC(c.m);
FORi:=sTO c.m-1 DO c.e[i] := c.e[i+1] END ;
am:=2*N;h:=cm<N
END
ELSE (*b := page to the left of a*) DEC(s);
IFs=0 THEN b := c.p0 ELSE b := c.e[s-1].p END
k := (b.m-N+1) DIV 2; (*k = nof items availablengage b*)
IFk >0 THEN
FORi:=N-2 TO 0 BY -1 DO a.e[i+k] := a.e[i] HN;
a.e[k-1] := c.e[s]; a.e[k-1].p := a.p0;
(*move k-1 items from b to a, one to ¢*) DEQ{HK);
FORi:=k-2 TO 0 BY -1 DO a.e][i] := b.e[i+b.m}END ;
c.e[s] := b.e[b.m]; a.p0 := c.e[s].p;
c.e[s].p :=a; a.m ;= N-1+k; h := FALSE
ELSE (*merge pages a and b, discard a*)
c.e[s].p :=a.p0; b.e[N] := c.e[s];
FORi:=0TO N-2 DO bh.e[i+N+1] := a.e[i] END ;
b.m:=2*N; DEC(c.m); h:=c.m <N
END
END
END underflow;

PROCEDURE delete(x: INTEGER; a: Page; VAR h: BOODNGA
(*search and delete key x in B-tree a; if a paggenflow arises,
balance with adjacent page or merge; h := "pagaiadersize™)
VAR, L, R: INTEGER; qg: Page;

PROCEDURE del(p: Page; VAR h: BOOLEAN);
VAR k: INTEGER; g: Page; (*global a, R*)
BEGIN k := p.m-1; q := p.e[K].p;
IF g # NIL THEN del(q, h);
IF h THEN underflow(p, q, p.m, h) END
ELSE p.e[K].p := a.e[R].p; a.e[R] := p.e[K];
DEC(p.m); h:=p.m<N
END
END del;
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BEGIN
IF a# NIL THEN
L:=0; R :=a.m; (*binary search*)
WHILE L<R DO
i :=(L+R) DIV 2;
IF x <= a.efil.key THEN R := i ELSE L := i+1 END
END ;
IFR =0 THEN g := a.p0 ELSE q := a.e[R-1].p END
IF (R <a.m) & (a.e[R].key = x) THEN (*found*)
IF g = NIL THEN (*a is leaf page*)
DEC(a.m); h:=a.m <N;
FORi:=R TO a.m-1 DO a.e[i] := a.e[i+1] END
ELSE del(q, h);
IF h THEN underflow(a, q, R, h) END
END
ELSE delete(x, q, h);
IF h THEN underflow(a, q, R, h) END
END
END
END delete;

PROCEDURE ShowTree(VAR W: Texts.Writer; p: PagegleINTEGER);
VAR i: INTEGER;
BEGIN
IF p # NIL THEN
FORi:= 1 TO level DO Texts.Write(W, 9X) END ;
FORi:=0 TO p.m-1 DO Texts.Writelnt(W, p.eky, 4) END ;
Texts.WriteLn(W);
IF p.m >0 THEN ShowTree(p.p0, level+1) END ;
FORi:=0 TO p.m-1 DO ShowTree(p.€[i].p, levEl END
END
END ShowTree;

Extensive analysis of B-tree performance has beelernteken and is reported in the referenced article
(Bayer and McCreight). In particular, it includesreatment of the question of optimal page sizdckvh
strongly depends on the characteristics of theg®and computing system available.

Variations of the B-tree scheme are discussed imtsn/ol. 3, pp. 476-479. The one notable obsevwati

is that page splitting should be delayed in theesauay that page merging is delayed, by first attergp

to balance neighboring pages. Apart from this stiiggested improvements seem to yield marginal gains
A comprehensive survey of B-trees may be foundi8][

4.7.2. Binary B-Trees

The species of B-trees that seems to be leasestirg is the first order B-tree (n = 1). But somes it
is worthwhile to pay attention to the exceptiorase. It is plain, however, that first-order B-tregs not
useful in representing large, ordered, indexed slats: invoving secondary stores; approximately ®0%
all pages will contain a single item only. Therefowe shall forget secondary stores and again densi
the problem of search trees involving a one-letaksonly.

A binary B-tree(BB-tree) consists of nodes (pages) with either entwo items. Hence, a page contains
either two or three pointers to descendants; tiggasted the ter@+3 tree According to the definition of
B-trees, all leaf pages appear at the same |lavglathnon-leaf pages of BB-trees have either twthee
descendants (including the root). Since we nowdagding with primary store only, an optimal economy
of storage space is mandatory, and the represmmtatithe items inside a node in the form of amyarr
appears unsuitable. An alternative is the dynaliniced allocation; that is, inside each node tretists a

linked list of items of length 1 or 2. Since eaatde has at most three descendants and thus needs to

harbor only up to three pointers, one is temptedolmbine the pointers for descendants and poiiters
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the item list as shown in Fig. 4.50. The B-treeanttkreby loses its actual identity, and the itassime

the role of nodes in a regular binary tree. It rieaecessary, however, to distinguish betweent@sin

to descendants (vertical) and pointers to siblomgshe same page (horizontal). Since only the pmnb

the right may be horizontal, a single bit is suéfit to record this distiction. We therefore intuod the
Boolean field h with the meaningrizontal The definition of a tree node based on this regretion is
given below. It was suggested and investigated bBa&yer [4-3] in 1971 and represents a search tree
organization guaranteeing p = 2*log(N) as maximuathpength.

TYPE Node = POINTER TO RECORD
key: INTEGER,;
left, right: Node;
h: BOOLEAN (*right branch horizontal*)
END

‘ A
'
PR PR

Fig. 4.50. Representation of BB-tree nodes

Considering the problem of key insertion, one miistinguish four possible situations that ariserfro
growth of the left or right subtrees. The four caaee illustrated in Fig. 4.51. Remember that Bgrieave
the characteristic of growing from the bottom togvéire root and that the property of all leafs beihthe
same level must be maintained. The simplest cgsis (£hen the right subtree of a node A grows and
when A is the only key on its (hypothetical) pagken, the descendant B merely becomes the sibfing o
A, i.e., the vertical pointer becomes a horizomainter. This simple raising of the right arm ist no
possible if A already has a sibling. Then we woolidain a page with 3 nodes, and we have to split it
(case 2). Its middle node B is passed up to thehigker level.

Now assume that the left subtree of a node B hasrgin height. If B is again alone on a page (&se
i.e., its right pointer refers to a descendantn tthee left subtree (A) is allowed to become B'dirgip (A
simple rotation of pointers is necessary sincdefigointer cannot be horizontal). If, howeveraBeady
has a sibling, the raising of A yields a page wlittee members, requiring a split. This split idized in a
very straightforward manner: C becomes a desceradd@htwhich is raised to the next higher levelsga
4).
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Fig. 4.51. Node insertion in BB-tree
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It should be noted that upon searching a key, kewano effective difference whether we proceedgion
horizontal or a vertical pointer. It therefore apreartificial to worry about a left pointer in ea8
becoming horizontal, although its page still camtanot more than two members. Indeed, the insertion
algorithm reveals a strange asymmetry in handlireggrowth of left and right subtrees, and it Iéts t
BB-tree organization appear rather artificial. Tehexr no proof of strangeness of this organizati@b;a
healthy intuition tells us that something is fishgd that we should remove this asymmetry. It |eadse
notion of thesymmetric binary B-tre€SBB-tree) which was also investigated by Baye4]4nh 1972. On

the average it leads to slightly more efficientrebdrees, but the algorithms for insertion ancetieh are
also slightly more complex. Furthermore, each noal@ requires two bits (Boolean variable Ih andtah)
indicate the nature of its two pointers.

Since we will restrict our detail considerationsth® problem of insertion, we have once again to
distinguish among four cases of grown subtreesy @he illustrated in Fig. 4.52, which makes thengdi



symmetry evident. Note that whenever a subtreeodé€rA without siblings grows, the root of the sebtr

becomes the sibling of A. This case need not beidered any further.

é\ K AR
4
_ o A%

e

Fig. 4.52. Insertion in SBB-trees

The four cases considered in Fig. 4.52 all refteetoccurrence of a page overflow and the subs¢équen
page split. They are labelled according to thectivas of the horizontal pointers linking the three
siblings in the middle figures. The initial situati is shown in the left column; the middle column

illustrates the fact that the lower node has beésed as its subtree has grown; the figures irrige
column show the result of node rearrangement.

It is advisable to stick no longer to the notiorpafjes out of which this organization had develofod

we are only interested in bounding the maximum pextigth to 2*log(N). For this we need only ensure
that two horizontal pointers may never occur incgssion on any search path. However, there is no
reason to forbid nodes with horizontal pointerghie left and right, i.e. to treat the left and right sides

differently. We therefore define the symmetric binB-tree as a tree that has the following propsrti
1. Every node contains one key and at most twanfers to) subtrees.

16¢€



2.Every pointer is either horizontal or verticBhere are no two consecutive horizontal pointersuon
search path.

3. All terminal nodes (nodes without descendarfipear at the same (terminal) level.

From this definition it follows that the longestaseh path is no longer than twice the height ofttke.
Since no SBB-tree with N nodes can have a heigigetathan log(N), it follows immediately that
2*log(N) is an upper bound on the search path lkerigtorder to visualize how these trees grow, &ferr
to Fig. 4.53. The lines represent snapshots takenglthe insertion of the following sequences ey
where every semicolon marks a snapshot.

Q 1 2; 3; 4 5 6; 7;
2) 5 4; 3; 1 2 7 6;
(3) 6 2; 4; 1 7 3 5;
4 4 2 6; 1 7; 3 5;

T 6h Sfbo
o &, fita
00 R ood o
000 LR P oot

Fig. 4.53. Insertion of keys 1 to 7

These pictures make the third property of B-treadiqularly obvious: all terminal nodes appear be t
same level. One is therefore inclined to compaesdhstructures with garden hedges that have been
recently trimmed with hedge scissors.

The algorithm for the construction of SBB-treessligow below. It is based on a definition of the type
Node with the two components |h and rh indicating wkeetlor not the left and right pointers are
horizontal.

TYPE Node = RECORD
key, count: INTEGER;
left, right: Node;
Ih, rh: BOOLEAN
END
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The recursive procedusearchagain follows the pattern of the basic binary tiregertion algorithm. A
third parameter h is added; it indicates whethemat the subtree with root p has changed, and it
corresponds directly to the parameter h of theeB-tsearch program. We must note, however, the
consequence of representing pages as linked digtsige is traversed by either one or two calldhef t
search procedure. We must distinguish betweenabe af a subtree (indicated by a vertical poirttes)

has grown and a sibling node (indicated by a hat&opointer) that has obtained another sibling and
hence requires a page split. The problem is easilyed by introducing a three-valued h with the
following meanings:

1. h = 0: the subtree p requires no changes dféleestructure.
2. h = 1: node p has obtained a sibling.
3. h = 2: the subtree p has increased in height.

PROCEDURE search(VAR p: Node; x: INTEGER; VAR hTIRGER);
VAR g, r: Node;
BEGIN (*h=0%)
IF p = NIL THEN (*insert new node*)
NEW(p); p.key := x; p.L := NIL; p.R := NIL; p.Ilh= FALSE; p.rh := FALSE; h :=2
ELSIF x < p.key THEN
search(p.L, x, h);
IFh >0 THEN (*left branch has grown or recehabling*)
q:=p.L;
IF p.Ih THEN
h :=2; p.lh := FALSE;
IF g.lh THEN (*LL*)
p.L:=q.R;q.lh:=FALSE;q.R:=p;p:=q
ELSE (*q.rh, LR*)
r:=q.R;q.R:=r.L;q.rh:=FALSE;r.L:=lgp.L:=r.R;rrR:=p;p :=r
END
ELSE DEC(h);
IFh=1THEN p.lh := TRUE END
END
END
ELSIF x > p.key THEN
search(p.R, x, h);
IFh>0 THEN (*right branch has grown or reag\sibling*)
q:=p.R;
IF p.rh THEN
h :=2; p.rh := FALSE;
IF g.rh THEN (*RR¥)
p.R:=q.L;qrh:=FALSE;q.L:=p;p:=q
ELSE (*q.lh, RL*)
r:=q.L;q.L:=r.R; q.h:= FALSE;r.R =R;p.R:=r.L;rL:=p;p:=r
END
ELSE DEC(h);
IFh=1THEN p.rh := TRUE END
END
END
END
END search;

Note that the actions to be taken for node reaawmmegt very strongly resemble those developed in the
AVL-balanced tree search algorithm. It is evidemattall four cases can be implemented by simple
pointer rotations: single rotations in the LL anB Rases, double rotations in the LR and RL casges. |
fact, procedursearchappears here slightly simpler than in the AVL c&3learly, the SBB-tree scheme
emerges as an alternative to the AVL-balancingmGan. A performance comparison is therefore both
possible and desirable.



We refrain from involved mathematical analysis amhcentrate on some basic differences. It can be
proven that the AVL-balanced trees are a substteoEBB-trees. Hence, the class of the latterrgela

It follows that their path length is on the averdarger than in the AVL case. Note in this conrmtthe
worst-case tree (4) in Fig. 4.53. On the other haode rearrangement is called for less frequethg
balanced tree is therefore preferred in those egqidins in which key retrievals are much more feequ
than insertions (or deletions); if this quotientni®derate, the SBB-tree scheme may be preferréd. It
very difficult to say where the borderline lies.sttongly depends not only on the quotient betwiben
frequencies of retrieval and structural changedsd on the characteristics of an implementafidris is
particularly the case if the node records haverselg packed representation, and if therefore adwmes
fields involves part-word selection.

The SBB-tree has later found a rebirth under tireenafred-black tree The difference is that whereas in
the case of the symmetric, binary B-tree every nodetains two h-fields indicating whether the
emanating pointers are horizontal, every node efrtéd-black tree contains a single h-field, indizat
whether the incoming pointer is horizontal. The pastems from the idea to color nodes with incoming
down-pointer black, and those with incoming horizbmpointer red. No two red nodes can immedaitely
follow each other on any path. Therefore, likehia tases of the BB- and SBB-trees, every searthipat
at most twice as long as the height of the treer@lexists a canonical mapping from binary B-titees
red-black trees.

48. Priority Search Trees

Trees, and in particular binary trees, constit@ey effective organisations for data that can lakei@d on

a linear scale. The preceding chapters have edpthsemost frequently used ingenious schemes for
efficient searching and maintenance (insertionetitel). Trees, however, do not seem to be heipful
problems where the data are located not in a amestiional, but in a multi-dimensional space. bt,fa
efficient searching in multi-dimensional spacestii one of the more elusive problems in computer
science, the case of two dimensions being of pgatidmportance to many practical applications.

Upon closer inspection of the subject, trees migititbe applied usefully at least in the two-diraemal
case. After all, we draw trees on paper in a timedisional space. Let us therefore briefly revibey
characteristics of the two major kinds of treegas@ncountered.

1. A search tree is governed by the invariants

p.leftZNIL implies p.leftx <p.x

p.right# NIL implies p.x <p.right.x
holding for all nodes p with key x. It is apparéhat only the horizontal position of nodes is lt a
constrained by the invariant, and that the verfaaitions of nodes can be arbitrarily chosen ghekh
access times in searching, (i.e. path lengthsinamanized.

2. A heap, also callegriority tree is governed by the invariants

p.left#NIL implies p.y<p.left.y

p.right# NIL implies p.y<p.right.y
holding for all nodes p with key y. Here evidentgly the vertical positions are constrained by the
invariants.

It seems straightforward to combine these two d@md in a definition of a tree organization inveot
dimensional space, with each node having two kegsdky, which can be regarded as coordinates of the
node. Such a tree represents a point set in a&,plan in a two-dimensional Cartesian space; it is
therefore callecCartesian tred4-9]. We prefer the termpriority search tregbecause it exhibits that this
structure emerged from a combination of the pridriée and the search tree. It is characterizethby
following invariants holding for each node p:

p.leftZNIL implies (p.leftx <p.x) & (p.¥ p.left.y)

p.rightZ NIL implies (p.x < p.right.x) & (p.¥ p.right.y)
It should come as no big surprise, however, thatsarch properties of such trees are not pantigula
wonderful. After all, a considerable degree o&ftem in positioning nodes has been taken awaysand i
no longer available for choosing arrangements yiglghort path lengths. Indeed, no logarithmicriztsu
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on efforts involved in searching, inserting, oredielg elements can be assured. Although this leddy
been the case for the ordinary, unbalanced seaehthe chances for good average behaviour ane sli
Even worse, maintenance operations can become rtaihgeldy. Consider, for example, the tree of Fig
4.54 (a). Insertion of a new node C whose cootdm#orce it to be inserted above and between ABand
requires a considerable effort transforming (&) (o).

McCreight discovered a scheme, similar to balandimgt, at the expense of a more complicated iosert
and deletion operation, guarantees logarithmic timends for these operations. He calls that strac
priority search tree [4-10]; in terms of our cldissition, however, it should be called a balancedrity
search tree. We refrain from discussing that sire¢because the scheme is very intricate andaictipe
hardly used. By considering a somewhat more réstricbut in practice no less relevant problem,
McCreight arrived at yet another tree structurejctvhshall be presented here in detail. Instead of
assuming that the search space be unbounded, bide@ud the data space to be delimited by a reletang
with two sides open. We denote the limiting valoéthe x-coordinate by, and Xax

In the scheme of the (unbalanced) priority seareé tutlined above, each node p divides the platoe i
two parts along the line x = p.x. All nodes of te& subtree lie to its left, all those in thehrigubtree to
its right. For the efficiency of searching thisoa@te may be bad. Fortunately, we may choose the
dividing line differently. Let us associate witadh node p an interval [p.L .. p.R), ranging oviéixa
values including p.L up to but excluding p.R. Thiwll be the interval within which the x-valuethé
node may lie. Then we postulate that the left eledant (if any) must lie within the left half, thight
descendant within the right half of this intervédence, the dividing line is not p.x, but (p.L+p/R)For
each descendant the interval is halved, thus tignitihe height of the tree to log(xmax-xmin). Tiasult
holds only if no two nodes have the same x-valueprdition which, however, is guaranteed by the
invariant (4.90). If we deal with integer coordies, this limit is at most equal to the wordlengttthe
computer used. Effectively, the search procedéa@sdibisection or radix search, and therefore threes
are called radix priority search trees [4-10]. ¥Feature logarithmic bounds on the number of djpmra
required for searching, inserting, and deletingelment, and are governed by the following invasian
for each node p:

p.left#NIL implies (p.L<p.leftx <p.M) & (p.y<p.left.y)
p.right# NIL implies (p.M<p.rightx <p.R) & (p.¥< p.right.y)

where
p.M = (p.L+p.R)DIV 2
pleftL = p.L
pleftR = p.M
p.rightL = p.M
p.rightR = p.R

for all node p, and root.L =5, root.R = Xax

A decisive advantage of the radix scheme is thamte@ance operations (preserving the invarianteund
insertion and deletion) are confined to a singlmemf the tree, because the dividing lines haxedfi
values of x irrespective of the x-values of theeitsd nodes.

Typical operations on priority search trees areeritisn, deletion, finding an element with the least
(largest) value of x (or y) larger (smaller) thagigen limit, and enumerating the points lying witta
given rectangle. Given below are procedures feerting and enumerating. They are based on the
following type declarations:

TYPE Node = POINTER TO RECORD
X, ¥: INTEGER;
left, right: Node
END

Notice that the attributes, xand »% need not be recorded in the nodes themselves. &teeyather
computed during each search. This, however, reguwo additional parameters of the recursive
procedure insert. Their values for the first ¢alith p = root) are xmin and xmax respectively. afp
from this, a search proceeds similarly to that ofgular search tree. If an empty node is encoeai¢he
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element is inserted. If the node to be insertedehg-value smaller than the one being inspedtednéw
node is exchanged with the inspected node. Findléynode is inserted in the left subtree, ikitgalue
is less than the middle value of the intervalhar ight subtree otherwise.

PROCEDURE insert(VAR p: Node; X, Y, XL, XR: INTER);
VAR xm, t: INTEGER,;
BEGIN
IF p = NIL THEN (*not in tree, insert*)
NEW(p); p-x := X; p.y:=Y; p.left := NIL; pight := NIL
ELSIF p.x = X THEN (*found; don't insert*)
ELSE
IFp.y>Y THEN
t=pXx; pXx=X; X:=t
t=py;py=Y;Y =t
END ;
xm = (xL + xR) DIV 2;
IF X < xm THEN insert(p.left, X, Y, xL, xm)
ELSE insert(p.right, X, Y, xm, xR)
END
END
END insert

The task of enumerating all points x,y lying inigem rectangle, i.e. satisfying xOx < x1 and y< y1 is
accomplished by the following procedure enumeraliecalls a procedure report(x,y) for each point
found. Note that one side of the rectangle liesttan x-axis, i.e. the lower bound for y is 0. This
guarantees that enumeration requires at most Q{Jog(s) operations, where N is the cardinality o t
search space in x and s is the number of nodesezated.

PROCEDURE enumerate(p: Ptr; x0, x1, y, XL, XRTBGER);
VAR xm: INTEGER;
BEGIN
IF p # NIL THEN
IF(p.y<=y) & (X0 <=p.x) & (p.x<x1) THEN
report(p.x, p.y)
END ;
xm = (xL + xR) DIV 2;
IF X0 < xm THEN enumerate(p.left, X0, x1xiz, xm) END ;
IF xm < x1 THEN enumerate(p.right, X0, x1xmm, XR) END
END
END enumerate

Exercises

4.1. Let us introduce the notion of a recursivestyp be declared as

RECTYPET = TO
and denoting the set of values defined by the Typenlarged by the single value NONE. The definitio
of the typeperson for example, could then be simplified to

RECTYPE person = RECORD name: Name;

father, mother: person
END

Which is the storage pattern of the recursive #iinec corresponding to Fig. 4.2? Presumably, an
implementation of such a feature would be based dgnamic storage allocation scheme, and the fields
named father and mother in the above example waarithin pointers generated automatically but hidden
from the programmer. What are the difficulties@ntered in the realization of such a feature?



4.2. Define the data structure described in the pasagraph of Section 4.2 in terms of records and
pointers. Is it also possible to represent thisilfiaconstellation in terms of recursive types asposed
in the preceding exercise?

4.3. Assume that a first-in-first-out (fifo) que@with elements of type TO is implemented as aelihk
list. Define a module with a suitable data strugtyprocedures to insert and extract an element @om
and a function to test whether or not the queuenipty. The procedures should contain their own
mechanism for an economical reuse of storage.

4.4, Assume that the records of a linked list congakey field of type INTEGER. Write a program to
sort the list in order of increasing value of teg& Then construct a procedure to invert the list

4.5, Circular lists (see Fig. 4.55) are usuallygetwith a so-called list header. What is the oaa®r
introducing such a header? Write procedures fer ittsertion, deletion, and search of an element
identified by a given key. Do this once assumhmgéxistence of a header, once without header.

A 4
[N

[ e—

/_'»
q—__LO®

« >~
Fig. 4.55. Circular list

4.6. A bidirectional list is a list of elements thae linked in both ways. (See Fig. 4.56) Bottkdi are
originating from a header. Analogous to the prewgdixercise, construct a module with procedures for
searching, inserting, and deleting elements.

< ¢ «—————— * |¢ .

Fig. 4.56. Bidirectional list

4.7. Does the given program for topological sortmgrk correctly if a certain pair <x,y> occurs more
than once in the input?

4.8. The message "This set is not partially ordemnedhe program for topological sorting is not yer
helpful in many cases. Extend the program soitlmttputs a sequence of elements that form a Idop,
there exists one.

4.9. Write a program that reads a program texntities all procedure definitions and calls, anddrto
establish a topological ordering among the submesti Let R— Q mean that P is called by Q.

4.10. Draw the tree constructed by the program shiowconstructing the perfectly balanced treg¢hé
input consists of the natural numbers 1, 2, 3n...

4.11. Which are the sequences of nodes encountédred traversing the tree of Fig. 4.23 in preorder,
inorder, and postorder?

4.12. Find a composition rule for the sequence nfimbers which, if applied to the program for gjiwi
search and insertion, yields a perfectly balanoces t

4.13. Consider the following two orders for travegsbinary trees:

174
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al. Traverse the right subtree.
a2. Visit the root.

a3. Traverse the left subtree.
bl. Visit the root.

b2. Traverse the right subtree.
b3. Traverse the left subtree.

Are there any simple relationships between the execps of nodes encountered following these orders
and those generated by the three orders definte itext?

4.14. Define a data structure to represent n-agstrThen write a procedure that traverses the tree

and generates a binary tree containing the sanmeents. Assume that the key stored in an element
occupies k words and that each pointer occupiesaamd of storage. What is the gain in storage when
using a binary tree versus an n-ary tree?

4.15. Assume that a tree is built upon the follayvitefinition of a recursive data structure (seeréize
4.1). Formulate a procedure to find an element witfiven key x and to perform an operation P os thi
element.
RECTYPE Tree = RECORD x: INTEGER,;
left, right: Tree
END

4.16. In a certain file system a directory of dikd is organized as an ordered binary tree. Eace
denotes a file and specifies the file name and ngnoher things the date of its last access, entad@n
integer. Write a program that traverses the trekedatetes all files whose last access was befoegtain
date.

4.17. In a tree structure the frequency of accésach element is measured empirically by attritgutd
each node an access count. At certain intervatisnef, the tree organization is updated by traveriire
tree and generating a new tree by using the progfastraight search and insertion, and insertirgy th
keys in the order of decreasing frequency countite program that performs this reorganizatios.
the average path length of this tree equal to, &@smuch worse than that of an optimal tree?

4.18. The method of analyzing the tree insertigyodthm described in Sect. 4.5 can also be used to
compute the expected numbersdE comparisons and Mf moves (exchanges) which are performed by
Quicksort, sorting n elements of an array, assurtiiagall n! permutations of the n keys 1, 2, n.are
equally likely. Find the analogy and determinga@d M,

4.19. Draw the balanced tree with 12 nodes whighthe maximum height of all 12-node balanced trees.
In which sequence do the nodes have to be inssadlat the AVL-insertion procedure generates this
tree?

4.20. Find a sequence of n insertion keys so tieaptocedure for insertion in an AVL-tree perforeash
of the four rebalancing acts (LL, LR, RR, RL) ahde once. What is the minimal length n for such a
sequence?

4.21. Find a balanced tree with keys 1 ... n apéraenutation of these keys so that, when applieiti¢o
deletion procedure for AVL-trees, it performs eaélthe four rebalancing routines at least once.ath
the sequence with minimal length n?

4.22. What is the average path length of the Fibcrtaee T,?

4.23. Write a program that generates a nearly @ptinee according to the algorithm based on the
selection of a centroid as root.

4.24. Assume that the keys 1, 2, 3, ... are indénte an empty B-tree of order 2. Which keys cquege
splits to occur? Which keys cause the height eftthe to increase? If the keys are deleted irsdinee
order, which keys cause pages to be merged (apds#id) and which keys cause the height to decrease?
Answer the question for (a) a deletion scheme ubi@igncing, and (b) a scheme whithout balancing
(upon underflow, a single item only is fetched frameighboring page).



4.25. Write a program for the search, insertion, @gletion of keys in a binary B-tree. Use theentyphe
and the insertion scheme shown above for the biddrge.

4.26. Find a sequence of insertion keys whichtisgafrom the empty symmetric binary B-tree, causes
the shown procedure to perform all four rebalan@ots (LL, LR, RR, RL) at least once. What is the
shortest such sequence?

4.27. Write a procedure for the deletion of elersénta symmetric binary B-tree. Then find a tred a
short sequence of deletions causing all four relo@dg situations to occur at least once.

4.28. Formulate a data structure and procedurethéoinsertion and deletion of an element in arfiyio
search tree. The procedures must maintain théfiggelovariants. Compare their performance withtt
of the radix priority search tree.

4.29. Design a module with the following proceduwpsrating on radix priority search trees:
-- insert a point with coordinates X, y.
-- enumerate all points within a specified rectang|
-- find the point with the least x-coordinate isgecified rectangle.
-- find the point with the largest y-coordinate it a specified rectangle.
-- enumerate all points lying within two (interdeg) rectangles.
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5 Key Transformations (Hashing)

5.1. Introduction

The principal question discussed in Chap. 4 attkeigythe following: Given a set of items charaizted

by a key (upon which an ordering relation is defindow is the set to be organized so that retrief/an
item with a given key involves as little effort pessible? Clearly, in a computer store each item is
ultimately accessed by specifying a storage addkessce, the stated problem is essentially onendfrig

an appropriate mapping H of keys (K) into addre§ags

H: K- A

In Chap. 4 this mapping was implemented in the fofraarious list and tree search algorithms based o
different underlying data organizations. Here wespnt yet another approach that is basically sirapte
very efficient in many cases. The fact that it dlas some disadvantages is discussed subsequently.

The data organization used in this technique isath@y structure. H is therefore a mapping tramsiiog
keys into array indices, which is the reason fer tlermkey transformatiorthat is generally used for this
technique. It should be noted that we shall notineeely on any dynamic allocation procedures;dtray
is one of the fundamental, static structures. Tle¢hod of key transformations is often used in peobI
areas where tree structures are comparable coopetit

The fundamental difficulty in using a key transfation is that the set of possible key values ismuc
larger than the set of available store addressemsy(andices). Take for example names consistingpofo
16 letters as keys identifying individuals in a sk thousand persons. Hence, there ate@@sible keys
which are to be mapped onto®*}fiossible indices. The function H is therefore osly a many-to-one
function. Given a key k, the first step in a retek(search) operation is to compute its associiatgek h =
H(k), and the second -- evidently necessary -- &dp verify whether or not the item with the Kieys
indeed identified by h in the array (table) T,,ite. check whether T[H(k)].key = k. We are immedigt
confronted with two questions:

1.What kind of function H should be used?
2.How do we cope with the situation that H doesyneld the location of the desired item?

The answer to the second question is that someoghettust be used to yield an alternative locatiary, s
index h', and, if this is still not the location thie wanted item, yet a third index h", and soTdre case in
which a key other than the desired one is at tlemtifled location is called aollision; the task of
generating alternative indices is termed collidgi@ndling. In the following we shall discuss theickmf a
transformation function and methods of collisiomdiiang.

5.2. Choice of a Hash Function

A prerequisite of a good transformation functiothiat it distributes the keys as evenly as possibéz the
range of index values. Apart from satisfying tréguirement, the distribution is not bound to antyepa,
and it is actually desirable that it give the ingmien of being entirely random. This property haem this
method the somewhat unscientific nah@shing,i.e., chopping the argument up, or making a mesis.
called thehash function Clearly, it should be efficiently computable,.jibe composed of very few basic
arithmetic operations.

Assume that a transfer function ORD(k) is avilathel denotes the ordinal number of the key k instite
of all possible keys. Assume, furthermore, thatairay indices i range over the intergers O .. MAiere N
is the size of the array. Then an obvious choice is

H(k) = ORD(k) MOD N

It has the property that the key values are spegadly over the index range, and it is therefoeetthsis of
most key transformations. It is also very efficlgrdomputable, if N is a power of 2. But it is edgahis
case that must be avoided, if the keys are seqsi@fcetters. The assumption that all keys are lggua
likely is in this case mistaken. In fact, wordstttdfer by only a few characters then most liketgp onto
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identical indices, thus effectively causing a masteven distribution. It is therefore particularly
recommended to let N be a prime number [5-2]. Hais the consegeunce that a full division operation
needed that cannot be replaced by a mere maskimigarfy digits, but this is no serious drawbacknuost
modern computers that feature a built-in divisiostiuction.

Often, hash funtions are used which consist ofyapgllogical operations such as the exclusive auime
parts of the key represented as a sequence of/ldigats. These operations may be faster than idivien
some computers, but they sometimes fail spectdgutardistribute the keys evenly over the range of
indices. We therefore refrain from discussing smehthods in further detail.

5.3. Collison Handling

If an entry in the table corresponding to a givey turns out not to be the desired item, then bsam is
present, i.e., two items have keys mapping ontcdinee index. A second probe is necessary, one based
an index obtained in a deterministic manner fromglven key. There exist several methods of geingrat
secondary indices. An obvious one is to link allries with identical primary index H(K) together @
linked list. This is called direct chaining. Themlents of this list may be in the primary tableoy; in the
latter case, storage in which they are allocatedsigally called aroverflow area This method has the
disadvantage that secondary lists must be maimtaarel that each entry must provide space for atgroi
(or index) to its list of collided items.

An alternative solution for resolving collisionst dispense with links entirely and instead simpbk at
other entries in the same table until the itenoimfl or an open position is encountered, in whademne
may assume that the specified key is not preseihieitable. This method is callepen addressings-3].
Naturally, the sequence of indices of secondarpesamust always be the same for a given key. The
algorithm for a table lookup can then be sketchefibbows:

h:=H(k);i:=0;
REPEAT
IF T[h].key = k THEN item found
ELSIF T[h].key = free THEN item is not in table
ELSE (*collision*)
i :=i+1; h:= H(K) + G(i)
END
UNTIL found or not in table (or table full)

Various functions for resolving collisions have bgwoposed in the literature. A survey of the tolpyc
Morris in 1968 [4-8] stimulated considerable ad¢ids in this field. The simplest method is to toy the
next location -- considering the table to be ciacut until either the item with the specified kisyfound or
an empty location is encountered. Hence, G(i)thg;indices hi used for probing in this case are

he = H(K)
hy = (hi+i)MODN, i=1..N-1

This method is calledinear probing and has the disadvantage that entries have aneypnde cluster
around the primary keys (keys that had not collidedn insertion). Ideally, of course, a functiorsi@uld

be chosen that again spreads the keys uniformly theeremaining set of locations. In practice, hogve
this tends to be too costly, and methods that acff@ompromise by being simple to compute and still
superior to the linear function are preferred. @héhem consists of using a quadratic function stinett
the sequence of indices for probing is

ho =H(K)
h = (h+i)MODN i>0

Note that computation of the next index need nedlire the operation of squaring, if we use theofwihg
recurrence relations for & i and d = 2i + 1.

hia =h+d
G =d+2 i>0



with hy = 0 and d = 1. This is calledquadratic probing and it essentially avoids primary clustering,
although practically no additional computations @guired. A very slight disadvantage is that inkpng
not all table entries are searched, that is, upseriion one may not encounter a free slot althaogte are
some left. In fact, in quadratic probing at leaaif the table is visited if its size N is a primenmber. This
assertion can be derived from the following dekihien. If the i th and the j th probes coincide npbe
same table entry, we can express this by the equati

i?MOD N =#MOD N
(i%- j =0 (modulo N)

Splitting the differences up into two factors, wean
(i+)(@i-j)=0 (modulo N)

and since # j, we realize that either i or j have to be astdd/2 in order to yield i+j = ¢c*N, with ¢ being an
integer. In practice, the drawback is of no impaet since having to perform N/2 secondary prolnes a
collision evasions is extremely rare and occury drthe table is already almost full.

As an application of the scatter storage technithe cross-reference generator procedure showedh S
4.4.3 is rewritten. The principal differences lie the proceduresearchand in the replacement of the
pointer typeNodeby the global hash table of words T. The hashtfandd is the modulus of the table size;
guadratic probing was chosen for collision handliNgte that it is essential for good performancs the
table size be a prime number.

Although the method of key transformation is md#ative in this case -- actually more efficienathtree
organizations -- it also has a disadvantage. Aftring scanned the text and collected the words, we
presumably wish to tabulate these words in alpleddetrder. This is straightforward when using eetr
organization, because its very basis is the ordegacch tree. It is not, however, when key tramsé&tions

are used. The full significance of the word hashiegomes apparent. Not only would the table printou
have to be preceded by a sort process (which igtexriere), but it even turns out to be advantagéou
keep track of inserted keys by linking them togethelicitly in a list. Hence, the superior perfante of

the hashing method considering the process ofewvetrionly is partly offset by additional operations
required to complete the full task of generatingedered cross-reference index.

CONST P =997; (*prime, table size*)
WordLen = 32; (*max length of keys*)
Noc = 16; (*max no. of items per word*)

TYPE Word = ARRAY WordLen OF CHAR,;
Table = POINTER TO ARRAY P OF
RECORD key: Word; n: INTEGER,;
Ino: ARRAY Noc OF INTEGER
END,;
VAR line: INTEGER,;

PROCEDURE search(T: Table; VAR a: Word);
VAR i, d: INTEGER; h: LONGINT; found: BOOLEAN;
BEGIN (*compute hash index h for a; uses globaialde line*)
i:=0;h:=0;
WHILE a[i] > 0X DO h := (256*h + ORD(ali])) MOD PINC(i) END ;
d = 1; found := FALSE;
REPEAT
IF T[h].key = a THEN (*match*)
found := TRUE; T[h].Ino[T[h].n] := line;
IF T[h].n < Noc THEN INC(T[h].n) END
ELSIF T[h].key[0] =" " THEN (*new entry*)
found := TRUE; COPY(a, T[h].key); T[h].Ino[0] #ne; T[h].n =1
ELSE (*collision*) h := h+d; d := d+2;
IFh>=P THEN h:=h-P END ;
IF d = P THEN Texts.WriteString(W, " Table ovexf"); HALT(88) END
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END
UNTIL found
END search;

PROCEDURE Tabulate(T: Table); (*uses global writér)
VAR i, ki INTEGER;
BEGIN
FOR k:=0TO P-1 DO
IF T[k].key[O] # " " THEN
Texts.WriteString(W, T[k].key); Texts.Write(W AB);
FORi:=0TO T[k].n -1 DO Texts.Writelnt(W, T[ko[i], 4) END ;
Texts.WriteLn(W)
END
END
END Tabulate;

PROCEDURE CrossRef(VAR R: Texts.Reader);
VAR i: INTEGER; ch: CHAR; w: Word;
H: Table;
BEGIN NEW(H);
FORi:=0 TO P-1 DO HJil.key[0] ;=" "END ; (ilmcate and clear hash table*)
line :=0;
Texts.Writelnt(W, 0, 6); Texts.Write(W, TAB); TexRead(R, ch);
WHILE ~R.eot DO
IF ch = ODX THEN (*line end*) Texts.WriteLn(W);
INC(line); Texts.Writelnt(W, line, 6); Texts.We(W, 9X); Texts.Read(R, ch)
ELSIF ("A" <= ch) & (ch <="Z") OR ("a" <= ch) &ch <="z") THEN
i:=0;
REPEAT
IF i < WordLen-1 THEN wi[i] := ch; INC(i) END
Texts.Write(W, ch); Texts.Read(R, ch)
UNTIL (i = WordLen-1) OR ~(("A" <= ch) & (ch <£Z")) &
~(("a" <=ch) & (ch <="2")) & ~(("0" <= ch) &ch <= "9"));
wl[i] ;= 0X; (*string terminator*)
search(H, w)
ELSE Texts.Write(W, ch); Texts.Read(R, ch)
END ;
Texts.WriteLn(W); Texts.WriteLn(W); Tabulate(H)
END
END CrossRef

5.4. Analysis of Key Transformation

Insertion and retrieval by key transformation haslently a miserable worst-case performance. Adterit

is entirely possible that a search argument magugoé that the probes hit exactly all occupied locat
missing consistently the desired (or free) onesudlty, considerable confidence in the correctradsthe
laws of probability theory is needed by anyone gigire hash technique. What we wish to be assured of
that on the average the number of probes is siftad.following probabilistic argument reveals thaisi
even very small.

Let us once again assume that all possible keyscrally likely and that the hash function H distites
them uniformly over the range of table indices.uss, then, that a key has to be inserted in a tdidee
n which already contains k items. The probabilifyhiiting a free location the first time is then-Kjn.
This is also the probability pl that a single corigma only is needed. The probability that excathe
second probe is needed is equal to the probability collision in the first try times the probabjliof
hitting a free location the next time. In genemak obtain the probability pi of an insertion redugy
exactly i probes as



pr = (n-k)/n

P2 = (k/n) x (n-k)/(n-1)

ps = (k/n) x (k-1)/(n-1) x (n-k)/(n-2)

pi :(k/n) x (k-1)/(n-1) x (k-2)/(n-2) x ... x (n-Kp-(i-1))

The expected number E of probes required upontiosesf the k+1st key is therefore

Exe1 S:l<i<k+l:ixp
1 x (n-k)/n + 2 x (k/n) x (n-K)/(n-1) +. ..
+ (k+1) * (k/n) x (k-1)/(n-1) x (k-2)/(n-23 ... x 1/(n-(k-1))

(n+1) / (n-(k-1))

Since the number of probes required to insert em its identical with the number of probes needed to
retrieve it, the result can be used to computeatregage number E of probes needed to access awando
key in a table. Let the table size again be denbted, and let m be the number of keys actuallthi
table. Then

E =Gkil1<k<m:EK)/m
= (n+1) x &k: 1<k<m: 1/(n-k+2))/m
= (n+1) x (K1~ Homs)

where H is the harmonic function. H can be apprexéd as K= In(n) + g, where g is Euler's constant. If,
moreover, we substitute a for m/(n+1), we obtain

E = (In(n+1) - In(n-m+1))/a = In((n+1)/(n-m+13)/= -In(1-a)/a

a is approximately the quotient of occupied andlabt locations, called thead factor a = 0 implies an
empty table, a = n/(n+H 1 a full table. The expected humber E of probe®tideve or insert a randomly
chosen key is listed in Table 5.1 as a functionth®f load factor. The numerical results are indeed
surprising, and they explain the exceptionally gpedormance of the key transformation method. Efen
a table is 90% full, on the average only 2.56 pso@ie necessary to either locate the key or to dimd
empty location. Note in particular that this figutees not depend on the absolute number of kegepte
but only on the load factor.

a E
0.1 1.05
0.25 1.15
0.5 1.39
0.75 1.85
0.9 2.56
0.95 3.15
0.99 4.66

Table 4.6 Expected number of probes as a funciidime load factor.

The above analysis was based on the use of ai@ellimndling method that spreads the keys uniformly
over the remaining locations. Methods used in jaragtield slightly worse performance. Detailed gsa
for linear probing yields an expected number obgoas

E = (1-a2)/(1-a)

Some numerical values for E(a) are listed in Tah®e [5-4]. The results obtained even for the pdores
method of collision handling are so good that thsra temptation to regard key transformation (lmagh
as the panacea for everything. This is particulsoyoecause its performance is superior even tonts
sophisticated tree organization discussed, at teasite basis of comparison steps needed for vatrénd
insertion. It is therefore important to point oupkcitly some of the drawbacks of hashing, evethdy are
obvious upon unbiased consideration.
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a E
0.1 1.06
0.25 1.17
0.5 1.50
0.75 2.50
0.9 5.50
0.95 10.50

Table 4.7 Expected number of probes for lineabimm

Certainly the major disadvantage over techniquésgudynamic allocation is that the size of the eaisl
fixed and cannot be adjusted to actual demandir®y fgood a priori estimate of the number of da&aris
to be classified is therefore mandatory if eitheopstorage utilization or poor performance (orretable
overflow) is to be avoided. Even if the numbertefris is exactly known -- an extremely rare cagbe-
desire for good performance dictates to dimengiertable slightly (say 10%) too large.

The second major deficiency of scatter storagenigcies becomes evident if keys are not only to be
inserted and retrieved, but if they are also tadbleted. Deletion of entries in a hash table iseewély
cumbersome unless direct chaining in a separatdlowearea is used. It is thus fair to say thaketre
organizations are still attractive, and actuallyopreferred, if the volume of data is largely mmkn, is
strongly variable, and at times even decreases.

Exercises

5.1. If the amount of information associated witltle key is relatively large (compared to the keglfj,
this information should not be stored in the hadiie. Explain why and propose a scheme for reptiegen
such a set of data.

5.2. Consider the proposal to solve the clustepngblem by constructing overflow trees instead of
overflow lists, i.e., of organizing those keys tobatlided as tree structures. Hence, each enttigeo§catter
(hash) table can be considered as the root ofssifpg empty) tree. Compare the expected performaific
this tree hashing method with that of open addngssi

5.3. Devise a scheme that performs insertions afetidns in a hash table using quadratic incremfemts
collision resolution. Compare this scheme expertalgnwith the straight binary tree organization by
applying random sequences of keys for insertiondatetion.

5.4. The primary drawback of the hash table teaig that the size of the table has to be fixeal thhe
when the actual number of entries is not known.uAss that your computer system incorporates a
dynamic storage allocation mechanism that allowshtain storage at any time. Hence, when the hash
table H is full (or nearly full), a larger table k¥ generated, and all keys in H are transferredt'to
whereafter the store for H can be returned to thege administration. This is called rehashingit&\Va
program that performs a rehash of a table H ofrsize

5.5. Very often keys are not integers but sequeottsiters. These words may greatly vary in lengtd
therefore they cannot conveniently and economidadistored in key fields of fixed size. Write a gnam
that operates with a hash table and variable lekgyh.
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