
A NOVEL FRAMEWORK FOR TEST DATA GENERATI ON USING
GENETIC ALGORITHIM

BINDHYACHAL KUMAR SINGH*, ARUN SOLANKI*, ASHISH KUMAR#

*School of Information and Communication Technology
Gautam Buddha University

Greater Noida, India
#Institute of Technology & Management

Meerut, India
bindhyachalsiwan@gmail.com asolanki@gbu.ac.in ashishtomar22@gmail.com

ABSTRACT

Software testing is one of the best methods to increase the confidence of the programmers in terms of
correctness, quality and reliability of software. The testing effort is divided into three parts: test case
generation, test execution, and test assessment. The goal of software testing is to design a set of minimal number
of test data such that it reveals as many faults as possible. This paper proposed a framework for generating
efficient test data for path testing using genetic algorithm (GA). The proposed framework accepts a program
unit files and then generate a control flow diagram (CFG). The CFG is used for identification of paths in a
detailed form with the help of path selection criteria. The identified path is used to select a target path using
probability theory. Finally the selected path and execution of genetic algorithm are used to generate the final
test data. The proposed framework also provides a facility for evaluation of generated test data to ensure their
effectiveness in terms of coverage and efficiency. The proposed framework reduces time, effort and also
increases the quality of generated test data. This paper is organized into three parts: part I discuss the
applicability of genetic algorithm in software testing, part II describes the proposed framework, part III
presents the experimental case study.

Keywords: Test Data Generation, Cyclomatic complexity, Genetic Algorithms, Path testing, Fitness Function.

I. INTRODUCTION

Today’s, software quality and reliability are the main challenges for software products. Software testing is an
important and valuable part of the software development life cycle. According to Myers “Software Testing is the
process of executing a program with the intent of finding errors” [G. J. Myers, 1979]. Testing remains the truly
effective means to assure the quality of a software system of non-trivial complexity [E. F. Miller, 2001] as well
as one of the most intricate and least understood areas in software engineering [J. A. Whittaker, 2000]. Software
testing is the process of verification and validation of the software product. Effective software testing will
contribute to the delivery of reliable and quality oriented software product, more satisfied users, lower
maintenance cost, and more accurate and reliable result. The importance of testing can be understood by the fact
that “around 35% of the elapsed time and over 50% of the total cost are expending in testing programs”.
Software is expected to work, meeting customer’s changing demands, first time and every time, consistently and
predictably [B. Beizer, 1990]. Software needs to be tested properly and thoroughly. Such that anything that goes
wrong can be detected and fixed in advance, before delivery to the user. However, even well tested software is
not guaranteed to be bug-free. If the testing process could be automated, it would be reduce the cost of software
development significantly. Automatic test data generation is a key problem in software testing and its
implementation can not only significantly improve the effectiveness and efficiency but also reduce the high cost
of software testing [I. Premal, et al., 2011].

Genetic algorithms have been used to find automatically a program‟s longest or shortest execution times. The
critical point of the problem involved in the automation of software testing is the automation of software test-
data generation [B. K. Singh, 2012]. Genetic algorithms that can automatically generate test data to selected
path. This algorithm takes a selected path as a target and executes sequences of operators iteratively for test
cases to evolve. The evolved test case can lead the program execution to achieve the target path for path testing
[I. Premal, et al., 2011]. A dynamic test data generation approach which is based on a path wise test data
generator to locate automatically the values of input variables for which a selected path is traversed. His steps
are program control flow graph construction and test data generation. The path selection stage is not used
because if unfeasible paths are selected, the result is a waste of computational effort examining these paths [B.

mailto:bindhyachalsiwan@gmail.com
mailto:asolanki@gbu.ac.in
mailto:ashishtomar22@gmail.com

Korel., 1990]. Software testing is the important means that give a guarantee for quality and reliability for S/W.
The techniques of genetic algorithm as the key algorithm to automatically generating the test data, and
elaborates some specific problems need to solve in realization process: such as coding, the selection of fitness
function and the improvement of hereditary operator [W. Xibo et al., 2011]. Random test data generation
consists of generating test inputs at random, in the hope that they will exercise the desired software features.
Often, the desired inputs must satisfy complex condition, and this makes a random approach seem unlikely to
succeed. In contrast, combinatorial optimization techniques, such as those using genetic algorithms, are meant to
solve problems involving the simultaneous satisfaction of many constraints [C. C. Michael, et al., 2001].

II. PROPOSED FRAMEWORK FOR TEST DATA GENERATION SYSTEM

This proposed framework accepts the program unit file and generate test data for path testing. This framework
perform a sequence of operations like code parsing and identification of predicates, Control Flow Graph
generation (CFG), calculation of cyclomatic complexity, GA execution, test data generation and finally
evaluation of effectiveness of generated test data. The proposed framework applies a hybrid path selection
criterion that combines the branch coverage, condition coverage, all-basic paths coverage, and full-predicate
criteria. This framework also provides a facility for evaluation of effectiveness of generated test data
theoretically.

The proposed framework is composed of seven main modules as shown in Fig. 1
Module 1: Code Parsing and Predicate Identification
Module 2: Cyclomatic Complexity Calculator
Module 3: Control Flow Graph Generator
Module 4: Path Selector using Path selection Criterion
Module 5: Genetic Algorithm Execution
Module 6: Test Data Generation
Module 7: Evaluation of effectiveness of Generated Test Data

Module 1: Code Parsing and Predicate Identification

This module accepts a program unit files (PUF) as an input. Accepted PUF is used to analyze text or code and
made a sequence of tokens to determine the grammatical structure with respect to given PUF. Code parsing is
also called syntactic analysis of a module. Code parser is one of the components that check the syntax and it
uses separate lexical analyzer to create tokens from the sequence of inputs characters. Predicate identification is
done using symbolic execution. A predicate node can be identified if it contains conditional test statement. It can
also be identified using CFG in following manner. “A node contains two or more branch then it is predicate
node”. But we can use this method when CFG is available priory. The output of this module is a set of identified
predicate nodes from accepted PUF.

Module 2: Control Flow Graph Generator

Control flow graph describes the logical structures of the program unit. It builds from a set of nodes and edges.
It is a directed graph that shows the all possibility for the flow of control through the PUF file from the source to
sink node. There are many flow of control through the program that guaranteed the various paths. This module
generates control flow graph by manually or automated tools (eclipse CFG generator) and provide a logical
structure of PUF in the form of graphical representation. The non executable statements like comments,
variables and its declaration are not considered for CFG. All decision making statements and looping statements
are represented by separate nodes. The output of this module is a control flow graph.

Module 3: Cyclomatic Complexity Calculator

Cyclomatic complexity (CC) is software metric that was developed by Thomas J. McCabe in 1976. It is used to
measure the no. of linearly independent path through a program’s source code. It also determines the minimum
number of test cases for a program unit files which covers each path of CFG [R. Mall, 2009]. A cyclomatic
complexity can be calculated using either CFG or predicate nodes in a PUF.

If we use CFG for calculation of CC then there are three parameters required. First is No. of nodes (N), No. of
edges (E) and No. of unconnected graph (P). It is denoted by V (G) [R. Mall, 2009].

V (G) = E-N+2P

If we use predicate nodes then firstly count the no. of predicates (D) in a given source code and after that use
following formula [R. Mall, 2009]

V (G) = D+1

Another way can be used for calculation of cyclomatic complexity is count the no. of bounded region (B) and
use following formula [R. Mall, 2009]

V (G) = B+1

 NO

 Fig. 1 Architecture of Proposed Framework

Fig. 1: Framework for Test Data Generation System

In this case system uses the predicate nodes for calculation of CC. Predicates in java code may be if, else, while,
try, catch, for, switch, break, continue etc. Firstly system read all code using file reader, code analyzer and string
tokenizer and counts the no. of predicates in a java PUF. A CC is the upper bound for branch coverage to
determine the no. of test cases that are necessary. Besides, it is a lower bound for path coverage to determine the

 YES

Module 1:

Code Parsing and
Predicate

Identification

Module 2:

CFG Generator

Module 3:

Cyclomatic
Complexity Calculator

Module 4:

Identification of
Path and Target
Path Selection

Module 6:

Generation of
Test Data

 YES

 Module 5:

GENETIC ALGORITHM NO
 EXECUTION

Initialize
Population

Construction of
Fitness Function

Check
Convergen
ce Criterion

Muta
tion

Cross
-over

Selec
tion

Generated
Test Data

 Module 7:

Evaluation of
Effectiveness
of Test Data

Effectiveness
Results

CC>No.
Of Path

Either Calculated CC or
Infeasible path selected

Program Unit
Files

Path Selection
Criteria

no. of test case which executes all feasible paths [N. B. Pakinam et al., 2011]. The output of this module is an
integer that indicates the cyclomatic complexity of given PUF.

Module 4: Path Selector using Path selection Criterion

The main aim of this module is to identify all possible feasible paths from CFG and after that select a target
path. This module takes a CFG of given PUF as an input and apply path selection criterion for selection of
paths. Path selection criterion may be selected all paths, statement coverage, condition coverage, branch
coverage etc. The greatest advantage of a path selection is to ensure that all program constructs are executed at
least once. Another advantage is to avoid redundancy in a selected path. This process is more complex than
others. If selection of path is not effective then it leads to a wrong results and duplicate test cases. After
selection of all paths, we need to select a target path. Target path is a path that ensures the execution of all paths
if it is executed. According to probability theory, the target path is selected and selected target path will become
convergence criterion [I. Premal, et al., 2011].

Module 5: Genetic Algorithm Execution

Genetic Algorithm starts with a set of initial individuals as the first generation, which is sampled random from
the problem domain. This algorithm is developed to perform a series of operations that transform the present
generation into a new fitter generation [Y. Chen1 et al., 2008]. Each individual in each generation is evaluated
with a fitness function. There are three primary operators are used to perform GA operations. First is selection
operator which is used to choose chromosome from population for mating. An individual with a higher ranking
is given has a greater probability for reproduction. The fitter individuals are allowed a better survival chance
from one generation to the next. Second is crossover operator which is practically a method for sharing
information between two chromosomes. In our case single crossover is used. Third operator is mutation which is
used to alter one or more values of the allele in the chromosome in order to increase structural variability [J. H.
Holland, 1975]. The key term in a GA execution is the evaluation of fitness function for every individual. In
each iteration of GA generates a generation of individuals and for every generation of individuals it generates a
test data. The output of this module is fitness function for every path and next generation results. Twelve
combination of operator can be applied to make more effective and efficient GA based algorithm for test data
generation.

Table 1: Combination of Operators

OPERATORS

 S. No.

SELECTION CROSSOVER

RWS RS SSS ES SUS SRS SP MP

1. Y - - - - - Y -

2. Y - - - - - - Y

3. - Y - - - - Y -

4. Y - - - - - Y

5. - - Y - - - Y -

6. - - Y - - - - Y

7. - - - Y - - Y -

8. - - - Y - - - Y

9. - - - - Y - Y -

10. - - - - Y - - Y

11. - - - - - Y Y -

12. - - - - - Y - Y

RWS: Roulette Wheel Selection RS: Rank Selection SSS: Steady-State Selection ES: Elitism Selection SUS:
Stochastic Universal Sampling SRS: Stratified Random Sampling SP: Single Point MP: Multi-Point

Module 6: Test Data Generation

This module generates test data using module 5 results and identified path. GA is used for test data generation
because the greatest merit of GA in path testing is its simplicity. The main goal of this module is to generate a
set of test data for every path.

 Module 7: Evaluation of effectiveness of Generated Test Data

This module is used for check the effectiveness of generated test data in terms of defect found, percentage of
execution coverage. It compares generated test data with previous results which is based on GA, Symbolic
execution and random test data generator. Test data effectiveness can be calculated as: [R. P. Mahapatra et al.,
2008].

TDG effectiveness = (NTD / NTotal)*100

Finally the proposed framework model will be useful got generation of test data for path testing using GA. It can
always generate better results and helpful to reduce the time required for lengthy testing activity.

III. EXPERIMENTAL CASE STUDY

A. Input: Program Unit Files (Triangle Problem)

Triangle classification problem (TCP) has been widely used in the area of software testing. It determines the
type of triangle if three input sides can form a triangle.

int triangletype(int a, int b, int c)
{

System.out.println("Enter three Sides");
a=Integer.parseInt(in.readLine());
b=Integer.parseInt(in.readLine());
c=Integer.parseInt(in.readLine());

if ((a>0 && b>0 && c>0) && (a+b>c && a+c>b && b+c>a))
{

if ((a==b) && (b==c))
{

System.out.println("EQUILATERAL TRIANGLE");
}

else if((a!=b) && (b!=c) && (a!=c))
{

System.out.println("SCALENE TRIANGLE");
}

else
{

System.out.println("ISOCELES TRIANGLE");
}
}

else
{

System.out.println("NOT A TRIANGLE");
}
}

B. Control flow Graph:

A control flow graph {fig. 2} of a given TCP contains different paths from entry node to exit node. A path that
begins with the entry node and ends with the exit node is called a complete path. Otherwise it is called
incomplete path or a path segment. Complete path may be feasible or infeasible. Let S = {S1, S2, S3.......Sn}
and T = {T1, T2, T3.....Tn} be two paths then ST = {S1, S2, S3.....Sn, T1, T2, T3....Tn} denotes the
concatenation of S and T. Let first(S) and last(S) denotes the first node S1 the last node Sn of path S

respectively. We can say that two paths connect if (last(S), first (T)) € E, where E is a set of all edges [J.
Edvardsson, 1999].

 A 10

 B 8 2 C

 D 6.4 1.6 E

 G 1.28 0.32 H

 F 6.4 1.28 J 0.32 K 2 I

 10 L

 Fig. 2: A Control Flow Graph for TCP

C. Cyclomatic Complexity:

Calculated cyclomatic complexity indicates upper bound of a linearly independent path in a program. It also
gives the minimum no. of test cases required to achieve path coverage.

No. of Nodes = 10
No. of Edges = 12

So,
Cyclomatic complexity [V (G)] = 12-10+2 = 4

It means at least 4 test cases required to achieve full path coverage and also at least 4 linearly independent path
exist in PUF.

D. Path Identification and Weight Assigning:

We can use base lining method to identify path from CFG. In this method choose a baseline and then flip it at
decision nodes. In above CFG let’s choose baseline path is

Path1 (P1): 1-2-4-9-10 (Baseline Path) Pure False Condition
Edges for path 1 [E1]: {A, C, I, L}

3
4

2

5
6

8 7

9

10

1

Path2 (P2): 1-2-3-5-9-10 (node 2 is flipped) Semi False Condition
Edges for path 2 [E2]: {A, B, D, F, L}

Path3 (P3): 1-2-3-6-7-9-10 (node 3 is flipped) Semi False Condition
Edges for path 2 [E3]: {A, B, E, G, J, L}

Path4 (P4): 1-2-3-6-8-9-10 (node 6 is flipped) Semi False Condition
Edges for path 2 [E4]: {A, B, E, H, K, L}

Now, weight for every edge is assigned in following manner.
“The weight of true edge will be 80% and for false edge will be 20% of a total weight. Total weight of a node is
sum of weight of all incoming edges at a particular node.”

Weights for edges are given following:

Table 2: Weight for every edges

S. NO. EDGES WEIGHT

1. A 10

2. B 8

3. C 2

4. D 6.4

5. E 1.6

6. F 6.4

7. G 1.28

8. H 0.32

9. I 2

10. J 1.28

11. K 0.32

12 L 10

E. Target Path Selection:

Target path is a path that guaranteed the execution of all paths and achieves full path coverage. If this path is
executed then we consider that all paths had executed. For selection of target path, Firstly need to make a
condition matrix which has MxN dimension where M is the total no. of feasible path and N is the total no. of
decision node for a particular path.

Table 3: Condition Matrix

PATH NO. DECISION NODE

 2 3 6

P1 F - -

P2 T T -

P3 T F T

P4 T F F

P1: Path 1 P2: Path 2 P3: Path 3 P4: Path 4 T: True F: False

From table 3,

P1 (F) So, P (P1) = 1/1 = 1

P2 (TT) So, P (P2) = 0/2 = 0

P3 (TFT) So, P (P3) = 1/3 = 0.333

P4 (TFF) So, P (P4) = 2/3 = 0.667

According to probability theory, Target path will be Path 1 because it has maximum probability. If a case exist
in which two maximum probabilities occurs then choose path as a target path which have more false condition.

F. Designing of Fitness Function:

 After that fitness function for designed for every path. Fitness function can be calculated as

Fitness Function = Sum of weight of all edges that involves in execution for a path

For Path1: 1-2-4-9-10
Edges for path 1 [E1]: {A, C, I, L}
Fitness Function = 10+2+2+10 = 24

Path2: 1-2-3-5-9-10
Edges for path 2 [E2]: {A, B, D, F, L}
Fitness Function = 10+8+6.4+6.4+10 = 40.8

Path3: 1-2-3-6-7-9-10
Edges for path 3 [E3]: {A, B, E, G, J, L}
Fitness Function = 10+8+1.6+1.28+1.28+10 = 32.16

Path4: 1-2-3-6-8-9-10 (node 6 is flipped) Semi False Condition
Edges for path 4 [E4]: {A, B, E, H, K, L}
Fitness Function = 10+8+1.6+0.32+0.32+10 = 30.24

It is clear from above calculated fitness function that path 1 and path 2 have minimum and maximum fitness
function respectively.

Table 4: Path Execution Probability and Its Fitness Function

Path Fitness
Function

 Pi Cp

P1 24 0.189 0.189

P2 40.8 0.321 0.510

P3 32.16 0.253 0.763

P4 30.24 0.237 1

Pi: Probability of Path execution Cp: Cumulative Probability

Pi can be calculated as: Pi = F (Xi) / ∑ (f (X))

According to table 4, Fitness = {30.24, 24, 40.8, 32.16} and Pi = {0.238, 0.189, 0.321, 0.252}

After that, apply single crossover operator and mutation operator to generate new test data or new population.

G. Generation of Test Data

Now, System accepts initial random population (Table 5) as an input and performs following operation to
generate test data.

i. Conversion of Input Data into Binary String

TC1 can be written as: 001101000110
TC2 can be written as: 010010010010

Table 5: Initial Random Population

TestCase Input Data

(a, b, c)

Expected
Outcome

TC1 3, 4, 6 Scalene
Triangle

TC2 4, 9, 2 Not A
Triangle

ii. Apply Crossover Operator

Parent 1(TC 1)

0 0 1 1 0 1 0 0 0 1 1 0

Single Point Crossover at K = 8

Parent 2 (TC 2)

0 1 0 0 1 0 0 1 0 0 1 0

Offspring 1

0 0 1 1 0 1 0 0 0 0 1 0

Offspring 2

0 1 0 0 1 0 0 1 0 1 1 0

So, after crossover new population becomes {(3, 4, 2), (4, 9, 6)}

iii. Apply Mutation Operator

After applying crossover, mutation operator is used to alter one or more values of the allele in the chromosome
in order to increase structural variability.

Mutation Probability = 0.83

After 1st generation new population becomes {(3, 5, 5), (4, 9, 7)}

Table 6: New Population and Its Fitness Function

New Test Case Input Data

(a, b, c)

Path Fitness
Function

Expected
Outcome

NTC1 3, 5, 5 P4 30.24 Isoceles
Triangle

NTC2 4, 9, 7 P3 32.16 Scalene
Triangle

Thus system can generate test data after every generation and make testing process more efficient.

IV. CONCLUSION

In this paper, the genetic algorithms are used to generate test data for path testing. The greatest merit of using
the genetic algorithm in program testing is its simplicity. The quality of test data produced by genetic algorithms
is higher than the quality of test data produced by random way because the algorithm can direct the generation
of test data to the desirable range fast. The proposed framework perform a sequence of operations like code
parsing and identification of predicates, Control Flow Graph generation (CFG), and calculation of cyclomatic
complexity, GA execution, test data generation and finally evaluation of effectiveness of generated test data.
The proposed framework can generate highly efficient test data with the minimum number of steps saving time,
effort and yet increasing the quality of generated test data thus improving the overall testing process
performance.

REFERENCES

• B. Beizer, (1990) “Software Testing Techniques”, 2nd. Edition, Van Nostrand Reinhold, USA.
• B. Korel, (1990) “Automated software test data generation” IEEE Transactions on Software

Engineering, VOL. 16, No. 8, pp. 870-879.
• B. K. Singh, (2012) “Automatic Efficient Test Data Generation Based on Genetic Algorithm for Path

Testing” EARDA International Journal of Research in Engineering & Applied Sciences (IJREAS),
Vol. 2, Issue 2, ISSN: 2249-3905, pp. 1460-1472, India.

• C. C. Michael, G. E. McGraw, M. A. Schatz, (2001) “Generating Software Test Data by Evolution”,
IEEE Transactions on Software Engineering, vol.27, No. 12, pp. 1085-1110.

• E. F. Miller, (2001) “Introduction to Software Testing Technology,” Tutorial: Software Testing &
Validation Techniques, Second Edition, IEEE Catalogue No. EHO 180-0, pp. 4-16.

• G. J. Myers, (1979) “The Art of Software Testing”, 1st Edition, John Wiley and Sons, NY, USA.
• I. Premal, B. Nirpal, K. V. Kale, (2011) “Using Genetic Algorithm for Automated Efficient Software

Test Case generation for Path Testing”, IEEE Int. J. Advanced Networking and Applications, vol. 2,
pp. 911-915.

• J. A. Whittaker, (2000) “What is Software Testing? And Why Is It So Hard?” IEEE Software, pp. 70-
79.

• J. Edvardsson, (1999) ”A survey on automatic test data generation” In Proceedings of the Second
Conference on Computer Science and Engineering in Linkoping (ECSEL), pp. 21-28.

• J.H. Holland, (2008) “Adaptation in natural and artificial system” The University of Michigan Press.
• R. Mall, (2009) “Fundamentals of Software Engineering”, 3rd Edition, PHI, New Delhi,India.
• R. P. Mahapatra, J. Singh, (2008)”Improving the Effectiveness of Software Testing through Test Case

Reduction” In Proceedings of World Academy of Science, Engineering and Technology (WASET), pp.
345-350.

• N. B. Pakinam, L. B. Nagwa, M. Hashem and M. F. Tolba, (2011) “A Proposed Test Case Generation
Technique Based on Activity Diagrams” International Journal of Engineering & Technology IJET-
IJENS Vol: 11 No: 03, pp. 37-57.

• W. Xibo, S. N. Shenyang, (2011) “Automatic Test Data Generation for Path Testing Using Genetic
Algorithms”, IEEE Third International Conference on Measuring Technology and Mechatronics
Automation (ICMTMA), pp. 596-599.

• Y. Chen1, Y. Zhong, T. Shi1 and L. Jingyong, (2008) “Comparison of Two Fitness Functions for GA-
based Path-Oriented Test Data Generation”, IEEE Fifth International Conference on Natural
Computation, pp. 566-570.

