
National Conference On Recent Advances in Technology and Engineering [RATE-2012]

1

A Comparative Analysis of Various Existing Software Reliability and Availability
Prediction Methods

Bindhyachal Kumar Singh, Arun Solanki & Abdur Rahman
School of Information and Communication Technology

 Gautam Buddha University
Greater Noida-201310
Uttar Pradesh, India.

Email: bindhyachalsiwan@gmail.com

Abstract

Software reliability engineering is emphasizing on engineering techniques for developing and maintaining

software systems whose reliability and availability can be quantitatively predict and measured. Software

reliability models are very useful to estimate the probability of the software fail along the time. It can be used

to predict the reliability of a system or the numbers of latent defects of the software product when it is deliver

to the customers. The number of defects recovered during various life cycle stages of development models for

a project conforms to a numerical distribution. In this paper, we take review of various reliability prediction

methods, which have been successfully used for predicting reliability and availability of a software system

and show a comparative analysis of different existing prediction models. This paper also provides a

framework for comparisons of software reliability and availability prediction methods.

Keywords: Reliability Prediction Model, Software Reliability Engineering, Safety, Maintainability,

Availability

1. INTRODUCTION

Software systems are increasingly entering

consumers’ everyday life. These systems are often

highly complicated and distributed to different

platforms over wired or wireless networks. To

satisfy the consumers’ needs, these systems must

demonstrate high reliability and availability; thus,

they must function correctly and without

interruption. In complex software systems,

reliability is the most important aspect of software

quality. Software reliability assessment is thus a

key technology for reducing software costs and

producing highly reliable software. A quantitative

measurement of software reliability is important for

managing software development; it is needed in

order to assess software performance and to

minimize development and maintenance costs.

Reliability is defined as the probability of the

failure-free operation of a software system for a

specified period of time in a specified environment

[1]. Availability is measured as the probability of a

software service or system being available when

needed. Reliability and availability are often

defined as attributes of dependability, which is “the

ability to deliver service that can justifiably be

trusted [2].

Several measures are traditionally used for

reliability and availability, such as mean time to

mailto:bindhyachalsiwan@gmail.com�
mailto:bindhyachalsiwan@gmail.com�

National Conference On Recent Advances in Technology and Engineering [RATE-2012]

2

failure (MTTF), mean time to repair (MTTR) and

failure rate.

Mean Time between Failure (MTBF) =

MTTF+MTTR

Architecture can be defined as the system structure

comprising the components, their externally visible

properties and their relationships among each other

[3]. Reliability and availability prediction from the

architectural descriptions is a challenging task for

two main reasons:

I. Reliability is strongly dependent on how

the system will be used. Since reliability

and availability are execution qualities, the

impact of faults on reliability differs

depending on how the system is used, i.e.

how often the faulty part of the system is

executed.

II. The reliability of software architecture

depends on the reliability of individual

components, component interactions, and

the execution environment. The reliability

of a component depends on its internal

capabilities, e.g. implementation

technology, size, and complexity,

information about which might be

unavailable, or not yet exist, while

architecting.

Several analysis/prediction methods have been

developed during recent decades for different types

of purposes and by different communities.

Consequently, they have different definitions and

measures for reliability, architecture, inputs,

outputs, notations, assumptions, users, etc.

2. A FRAMEWORK FOR RELIABILITY AND

AVAILABILITY PREDICTION METHODS

The framework provides in this paper can be used

as a basis for our method comparison. The given

framework reveals the characteristics required for

the analysis methods to be implemented for the

evaluation of their suitability for architecture level

prediction. The elements of the categories give rise

to some specific requirements for the reliability and

availability analysis methods that are applicable at

the architecture level. The reliability prediction of a

component is problematic, as it is affected by

several factors, such as the component’s

implementation technology and configuration. Due

to large-scale requirements, and rather often three-

layer characterization and a highly complicated

distribution to several platforms, the architecture

modelling of software systems is challenging.

Table 1: Framework for Reliability and Availability

Analysis

S.

N

o.

Type Elements Questions

1. User 1. Resources

2. Target

Group

3. Skills

Required

4. Expected

Gains

5. Expected

Losses

What skills are

required for using

the method?

What are the gains

of using the

method?

Who is the

intended user of

the method?

How much target

assigned for

Reliability &

Availability?

What are the

losses of using

these methods?

2. Valid

-ation

1. Accuracy

of

prediction

2. R & A.

requireme

Does the method

define how to

trace requirements

into the

architecture?

National Conference On Recent Advances in Technology and Engineering [RATE-2012]

3

nts

Traceabili

ty

3. Process

maturity

levels of

the

method

Is it Analyze the

Accuracy of

prediction

 How close are the

expected values to

the actual values?

3. Envir

onme

nt

1. Scope of

applicabili

ty

2. Architectu

re-

specificity

3. Goal

Is the method

applicable to the

different layers of

S/W

 Is the method

limited to

application

domain?

What is the goal

of the analysis

method?

4. Stuffi

ng

1. Variability

2. System

usage

3. Language

4. Tool

support

Does the method

provide a special

model with which

the analysis is

Performed?

Is the variation of

architecture

considered in the

analysis?

What notation is

used in

architecture

descriptions?

Are there any

tools that support

the method?

3. COMPARATIVE ANALYSIS OF R & A

PREDICTION METHOD

In this section, we compare various software

reliability and availability approaches who predict

these tow parameters of quality assurance.

3.1 Criteria for Comparison

We define the criteria for the selection of

approaches for analysis of prediction methods and

concentrate only on the methods that fulfil these

criteria. Also introduce a number of different

methods and approaches on reliability and

availability prediction and compare the most

interesting and promising ones based on the

framework. According to these criteria, an analysis

approach has to

• Concentrate only on software Reliability

and Availability

• Take the user centric approach on

software product and its analysis.

• Provide a clear applicable analysis method

• Be based on architectural models

Operational profiles and usage profiles, which are

usually abstractions from component execution

details, are commonly modelled as Markov chains

[5], [6]. Markov chains are generally Finite State

Machines (FSMs) that are extended with inter-

module transition probabilities as the user profile.

Use cases and scenarios are a means for

requirements engineering to capture system

requirements [8]. Use cases are used to define

usage scenarios for different system users, thereby

defining the external requirements on system

capabilities. A scenario is a brief description of a

single interaction of a stakeholder with a system.

While use cases focus on runtime behaviour with

the stakeholder as the user, scenarios also

encompass other interactions with the system, such

as a maintainer carrying out modification. Message

Sequence Charts (MSC) and Sequence Diagrams

(SD) are widely accepted notations for scenario-

based specifications.

3.2 Comparison of the Selected Methods

National Conference On Recent Advances in Technology and Engineering [RATE-2012]

4

We select a various methods and compare those

methods in the aspect of software reliability and

prediction. Cheung [5] provides a user-oriented

software reliability model, according to which the

reliability of a system can be computed as a

function of both the deterministic properties of the

structure of a system and the stochastic properties

of the utilization and failure of its components.

Basically, Cheung’s model is a Markov reliability

model that models the composite structure of a

system as a control flow graph of a program. The

approach of Reussner et al. [1] assumes that

components rely on other components of the

environment, which furthermore use the properties

of underlying hardware. The aim of this method is

to predict component reliability through the

compositional analysis of usage profiles and the

reliability of environment components. The path-

based approaches, such as [14], [13] and [15] focus

on running the software for various inputs. For

each run, the resulting execution path is specified

in terms of sequences involving components and

connectors. The reliability of the software is a

weighted average of the reliabilities of all the paths

[26]. The Krishnamurthy and Mathur model [14]

estimates the reliability of a sequence of

components executed in each test run and

subsequently calculates the average of all the test

runs. Gokhale and Trivedi [15] also propose a path-

based approach to architecture-based software

reliability prediction, removing the assumption of

independence among the successive executions of

the components by proposing a solution based on

the failure intensities of components. The model

presented in [13] is a scenario-based probabilistic

model, which is applicable for high-level designs.

This model is specific to component-based

software whose analysis is based on execution

scenarios. The Scenario- Based Reliability Analysis

(SBRA) method provides the Component

Dependency Graph (CDG) model, which represents

in turn the components, component reliabilities,

link and interface reliabilities, transitions, and

transition probabilities. Rodrigues et al. [10]

present a scenario-based approach on reliability

prediction, in which the more fine-grained system

architecture model is synthesized for computing a

reliability prediction. The approach is based on

scenario specifications and Cheung’s user-oriented

software reliability model [5]. The approach

utilizes a high-level message sequence chart

(HMSC), which is annotated with scenario

transition probabilities derived from the operational

profile of the system. An extension to the Bayesian

Approach has been proposed by Cortellessa et al.

[17]. While the approach uses the same UML

extensions as the Bayesian approach, it also

extends the approach by annotating the deployment

diagram. The annotation of the deployment

diagram with the probabilities of failure over the

connectors among sites enables the reliability

model to embed the communication failures. Zarras

and Issarny [21] propose a reliability modelling

method that describes the architecture based on the

behaviour and reliability aspects of the system. The

architecture is first described, after which success

criteria, i.e. abstract descriptions of the behaviour

expected by the system, are defined through the

definition of use case diagrams. The failure rate,

MTTF, and reliability of each of the architectural

elements are approximated, and described with the

signal class that describes the failures generated by

a particular architectural element. Finally, the

overall reliability of the system is assessed using

the Reliability Block Diagram (RBD), which can

be derived directly from the collaboration diagram.

The approach of Grassi [22] directly focuses on

service reliability, and is therefore examined

further according to our framework. The approach

exploits a unified service model that helps to model

National Conference On Recent Advances in Technology and Engineering [RATE-2012]

5

and analyze different architectural alternatives,

where the characteristics of high and low level

services are taken into account. The approach is

based on the idea that a set of components requires

and subsequently provides services. The approach

of Wang et al. [25] especially discussed

architectural styles. The approach provides a model

for computing the reliability of heterogeneous

systems consisting of various architectural styles.

System reliability is analyzed based on the

reliabilities of components and connectors. The

operational profile is taken into account as

transition probabilities between the components.

4. RESULTS ON COMPARATIVE ANALYSIS

Although there is a large area of literature review

on software reliability and availability, as well as

other quality attributes such as maintainability,

usability, safety e.t.c. have just recently begun to be

addressed at the architecture level by methods,

techniques and notations. All of selected methods

require some additional work, mostly regarding the

development of an analysis model or application of

mathematical models and algorithms. It is obvious

that approaches closer to UML require less

additional work as UML being a widely used

standard, and therefore, are more familiar to

architects working in industry than the approaches

that require a separate analysis model. It is also

obvious that more tool support is needed in order to

make reliability prediction a fluent part of software

development. In recent days, there are several tools

available that support at least the analysis that is

based on Markov chains [60]. We could not find

any method that would also consider variability in

the analysis; therefore, no method is applicable for

software family engineering. None of the available

methods recognizes the variability in reliability

requirements, or in architecture descriptions. In

several approaches, component reliability was

assumed available. There are a number of

approaches that especially analyze the reliability of

components such as [29], [30]. Except the approach

of [1], the analysis approaches studied above do not

analyze component reliability, or do not consider

the effect of a component’s internal behaviour on

its reliability.

5. CONCLUSION

In this paper, a framework is defined for comparing

existing reliability and availability analysis

methods from the software architecture point of

view. The comparison of the methods revealed that

none of the studied methods alone could provide

adequate support for predicting reliability and

availability from software architecture. In addition,

there was no proof of the maturity of the methods

as they were not validated or used in the industry.

The methods seemed to focus on analyzing systems

by computing, for example, the probability of

failure, the probability of repair or some other

measures. The main benefit of an integrated

environment is that it enables the achievement of a

better traceability of reliability and availability

requirements, and therefore, a better applicability

of the methods for large software products in the

industry.

Furthermore there exist some methods that can be

applied in the industry as soon as their

shortcomings have been removed. The prediction

of reliability and availability provides benefits that

are visible in both product quality and production

efficiency, as long as the prediction is fluently

integrated with software architecture design.

REFERENCES

[1] Reussner, R.H., Schmidt, H.W., Poernomo, I.H.

“Reliability prediction for component-based

National Conference On Recent Advances in Technology and Engineering [RATE-2012]

6

software architectures”, J. Systems Softw. 66(3), pp.

241–252 (2003)

[2] Molter,G. “Integrating SAAMin Domain-

centric and Reuse based development process” In:

Proceedings of the 2nd Nordic Workshop on

Software Architecture (1999)

[3] Bass, L., Clements, P., Kazman, R. “Software

Architecture in Practice” Addison-Wesley, Reading,

452 p (1998)

[4] Kazman, R., et al. “The architecture tradeoff

analysis method” In: The 4th IEEE International

Conference on Engineering of Complex Computer

Systems (1998)

[5] Cheung, R.C. “A user-oriented software

reliability model” IEEE Trans. Softw. Eng. 6(2),

118–125 (1980)

[6] Musa, J.D. “Operational profiles in software-

reliability engineering” IEEE Softw. 10(2), 14–32

(1993)

[7] Whittaker, J.A., Thomason, M.G. “A Markov

chain model for statistical software testing” IEEE

Trans. Software. Eng. 20(10), 812–824 (1994)

[8] Jacobson I. “Object-Oriented Software

Engineering: A Use Case Driven Approach”

Addison-Wesley, ACM Press, 400 p (1992)

[9] Runeson, P., Regnell, B. “Derivation of an

integrated operational profile and use case model”

In: Proceedings. The Ninth International

Symposium on Software Reliability Engineering

(1998)

[10] Rodrigues, G.N., Rosenblum, D.S., Uchitel, S.

“Using scenarios to predict the reliability of

concurrent component-based software systems” In:

8th International Conference on Fundamental

Approaches to Software Engineering, FASE 2005.

[11] Thomason, M.G.,Whittaker, J.A. “Rare

failure-state in a Markov chain model for software

reliability” In: Proceedings of the 10th

International Symposium on Software Reliability

Engineering. IEEE, Boca Raton, (1999)

[12] Gokhale, S., Trivedi, K.S. “Reliability

prediction and sensitivity analysis based on

software architecture” In: Proceedings of the 3rd

International Symposium on Software Reliability

Engineering (ISSRE 02). IEEE Computer Society,

Annapolis, (2002)

[13] Yacoub, S., Cukic, B., Ammar, H. “Scenario-

based reliability analysis of component-based

software” In: Proceedings of 10th International

Symposium on Software Reliability Engineering

(ISSRE’99) (1999)

[14] Krishnamurthy, S., Mathur, A.P. “On the

estimation of reliability of a software system using

reliabilities of its components” In: Proceedings of

the 8th International Symposium on Software

Reliability Engineering (ISSRE97) (1997)

[15] Gokhale, S.S., Trivedi, K.S. “Dependency

characterization in path-based approaches to

architecture-based software reliability prediction.”

In: Proceedings of the IEEE Workshop on

Application-Specific Software Engineering

Technology, ASSET-98 (1998)

[16] Leangsuksun, C., Song, H., Shen, L.

“Reliability modelling using UML” In: Proceeding

of the 2003 International Conference on Software

Engineering Research and Practice. Las Vegas

(2003)

[17] Cortellessa, V., Singh, H., Cukic, B. “Early

reliability assessment of UML based software

models” In: Third International Workshop on

Software and Performance. Rome (2002)

[18] Cortellessa, V., Pompei, A. “Towards a UML

Profile for QoS: A Contribution in the Reliability

Domain” In: Proceedings of the Fourth

International Workshop on Software and

Performance. ACM Press (2004)

National Conference On Recent Advances in Technology and Engineering [RATE-2012]

7

[19] Rodrigues, G.N., Roberts, G., Emmerich, W.,

Skene, J. “Reliability support for the model driven

architecture” In: Proceedings of the ICSE

Workshop on Software Architecture for

Dependable Systems. Portland (2003)

[20] Rodrigues, G.N. “A model driven approach for

software systems reliability” In: 26th International

Conference on Software Engineering (ICSE’04).

Edinburgh (2004)

[21] Zarras, A., Issarny, V. “Assessing software

reliability at the architectural level” In:

Proceedings of the 4th ACM SIGSOFT

International Software Architecture Workshop

.ACM, Ireland (2000)

[22] Grassi, V. “Architecture-based dependability

prediction for service-oriented computing” In:

Proceedings of the Twin Workshops on

Architecting Dependable Systems, International

Conference on Software Engineering (ICSE 2004).

Springer, Edinburgh, (2004)

[23] Greenfield, J. “UML Profile for EJB” in

Technical report. Rational Software Corp (2001)

[24] Laprie, J.C., Kanoun, K: “X-ware reliability

and availability modelling” IEEE Trans. Software.

Eng. 18(2), 130–147 (1992)

[25] Wang, W.-L., Wu, Y., Chen, M.-H. “An

architecture-based software reliability model” In:

Pacific Rim International Symposium on

Dependable Computing. IEEE, HongKong (1999)

[26] Shooman, M. “Structural models for software

reliability prediction” In: Proceedings of the 2nd

International Conference on Software Engineering

(1976)

[28] Leangsuksun, C., et al. “Availability

prediction and modelling of high availability

OSCAR cluster” In: IEEE International

Conference on Cluster Computing. Hong Kong

(2003)

[29] Everett, W. “Software component reliability

analysis” In: IEEE Symposium on Application

Specific Systems and Software Engineering and

Technology. Richardson (1999)

[30] McGregor, J.D., Stafford, J.A., Cho, I.-H.

“Measuring component reliability” In: Proceedings

of the 6th ICSE Workshop on Component-Based

Software Engineering. IEEE, Portland (2003)

